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Abstract

Cosmic Ray Energy Spectrum Measurement with the Antarctic Muon and Neutrino

Detector Array (AMANDA)

by

Dmitry Aleksandrovich Chirkin

Doctor of Philosophy in Physics

University of California at Berkeley

Professor Buford Price, Chair

AMANDA-II is a neutrino telescope composed of 677 optical sensors organized along 19 strings

buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-

ray- and neutrino-induced charged leptons. The majority of events recorded by AMANDA-II are

caused by muons which are produced in the atmosphere by high-energy cosmic rays. The lead-

ing uncertainties in simulating such events come from the choice of the high-energy model used

to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implemen-

tation of the ice properties at the depth of the detector, and individual optical module sensitivities.

Contributions from uncertainties in the atmospheric conditions and muon cross sections in ice are

smaller.
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The downgoing muon simulation was substantially improved by using the extensive air

shower generator CORSIKA to describe the shower development in the atmosphere, and by writ-

ing a new software package for the muon propagation (MMC), which reduced computational and

algorithm errors below the level of uncertainties of the muon cross sections in ice.

A method was developed that resulted in a flux measurement of cosmic rays with energies

����������	
	
TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-II have

energies in this range) independent of ice model and optical module sensitivities. Predictions of six

commonly used high-energy interaction models (QGSJET, VENUS, NEXUS, DPMJET, HDPM,

and SIBYLL) are compared to data. The best agreement with direct measurements is achieved

with QGSJET, VENUS, and NEXUS. Assuming a power-law energy spectrum ( �
��� ����������� ) for

cosmic-ray components from hydrogen to iron ( ��� H � ����� � Fe) and their mass distribution accord-

ing to Wiebel-Sooth (Wiebel-Sooth & Biermann, 1999), � ��� � and  � were corrected to achieve

the best description of the data. For the hydrogen component, values of � ��� ! � 	��"�#	%$�&'	��(	
	*)

m �,+ sr �.- s �.- TeV �.- ,  �!'� �/�0)1	2&3	��(	%�
are obtained. For the South Pole, a vertical muon flux at

1 TeV of 4 ���(	%�5&6	��(	*)
7 � �#	 �.- � cm �,+ sr �.- s �.- GeV �.- is obtained (for all interaction models), and

the fitted spectral index is
�/��$
$8&9	��(	%�

(for QGSJET, VENUS, and NEXUS). The difference in the

predicted value of the spectral index  between high-energy interaction models is as much as 0.1,

which is explained by the difference in the observed muon multiplicity at the depth of the detector

in data simulated with different interaction models.

Professor Buford Price
Dissertation Committee Chair
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To my Mom,

for I can always count on you.
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Chapter 1

Introduction

- If there is a solution, there must have been a problem -

An important goal of astrophysics is to understand the properties of cosmic rays, the

energy spectrum of which spans over many orders of magnitude (Figure 1.1). For almost six decades

in energy up to about
� � �#	 -�� eV (the “knee” in the spectrum) the spectrum follows a power law,

� � 
 � ��� ����� , with a spectral index of  �� �/�0)
. The chemical composition and energy spectra

of the cosmic rays have been measured by balloon and satellite experiments (direct measurements)

[1] in the energy range below 100 TeV. Various ground-based experiments complement these data

for energies above 1 TeV (indirect measurements). The mechanism which leads to the power law

dependence was known as “Fermi” acceleration since 1949 [2], however not until 1978 [3] was the

spectral index of � �/�0)
possible to explain (with the first order Fermi acceleration mechanism, see

also [4] and [5], together with models of propagation, which describe the escape rate of the cosmic

rays from the Galaxy [6], e.g., the so-called leaky-box model, [5]).

Cosmic rays arriving at Earth consist of nuclei, electrons, gamma rays, and neutrinos

(Figure 1.2). Charged particles change their direction in the Galactic and extragalactic magnetic
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Figure 1.1: Energy spectrum of cosmic rays, figure adapted from [7]. Results of this work
(Chapter 5) are shown with blue solid line in the region of AMANDA-II sensitivity
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fields, and gamma rays are absorbed by interstellar dust, which makes neutrinos very interesting

due to their neutrality and extremely small interaction with matter.
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Figure 1.3: Production of muons seen by
AMANDA-II, from [9]

A detection volume of � 1 km � is necessary for detection of high-energy extraterres-

trial neutrinos [10]. Several large underwater/ice detectors (AMANDA, Antares, Baikal, IceCube,

NESTOR, NEMO) designed to search for extraterrestrial neutrinos are presently at different stages

of planning and operation. These telescopes look for Cherenkov photons in a naturally occurring

transparent medium [11]. The signal consists of muons, stemming from interactions of cosmic

neutrinos in or close to the detector, and the main background consists of muons from air showers

initiated by charged cosmic rays (Figure 1.3).
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AMANDA-II (Antarctic Muon and Neutrino Detector Array, as operated since year 2000,

[12]) is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep

in the Antarctic ice cap (Figure 1.4). The signal consists of hits produced by Cherenkov photons

emitted by muons passing through ice (Figure 1.5).
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Figure 1.5: Cherenkov photons in ice, from
[8] Figure 1.6: Data simulation chain

Although the primary goal of AMANDA-II is to observe a possible extra-terrestrial neu-

trino signal, the majority of events in AMANDA-II are caused by downward-going muons and

neutrinos produced in the atmosphere by high-energy cosmic rays (Figure 1.7). It is therefore pos-

sible to use AMANDA-II data to indirectly measure the flux of cosmic rays in the energy range

where AMANDA-II is most sensitive ( � � � �#	
	
TeV). As shown in this work, AMANDA-II pro-

vides important additional data in the transitional region between direct and indirect measurements,

where significant disagreement between experiments exists (of up to 50%, as seen in [13]). More-

over, AMANDA-II does this by using the penetrating muon component of the cosmic-ray induced
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Figure 1.7: Shower development in the atmosphere, from [14]

air showers (as opposed to the e-m component1), thus providing a different test of the interaction

models widely used to explain data from air shower experiments.

To measure the cosmic ray flux with AMANDA-II, comparison of data with a detector

simulation is necessary. In the Monte Carlo simulations (Figure 1.6), a power law energy spectrum

of the cosmic ray components with relative abundances taken from [1] (Appendix A) was assumed.

Overall normalization and spectral index were varied to match experimental data with simulated

data. CORSIKA [15] (versions 6.016 and 6.018) was used to generate the muon flux at the ice
�

Electrons and photons, which provide the signal for the majority of the surface arrays in this energy range.
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surface from the assumed cosmic ray flux. Simulation was performed for six high-energy models

available with CORSIKA. Muons were propagated through ice to and through the detector with

MMC [16] (version 1.08). To generate Cherenkov photons and simulate AMANDA-II response,

the detector simulation program AMASIM [17] (version 2.73.14) was used.

Emphasis was put on understanding and minimizing systematic uncertainties. The sys-

tematic uncertainty in the knowledge of atmospheric conditions was estimated by comparing exper-

imental and simulated data from several different periods during the year 2000. The uncertainty in

the muon cross sections in ice is less than 1% [18] (Section 3.10). Errors due to approximations in

the muon propagation algorithm and computational errors were estimated to be much smaller [19]

(Section 3.4). The knowledge of the ice density profile and the depth of the optical modules (OM)

introduces an error of less than 1 m, which contributes less than 1% to the uncertainty in muon

propagation.

To minimize hardware-related uncertainties, the number of muon events seen at the depth

of each optical module of the detector was calculated using a method described in Section 4.3. The

distribution of noise hits was determined from data uncorrelated with the muon signal. This distri-

bution was folded with the distribution of hits coming from observed Cherenkov photons emitted

by muons inside the detector. To account for photons from muons passing close to a given OM

which are possibly missed by that OM, the efficiency of that OM was determined by analyzing the

signal in the surrounding OMs (i.e., in the OMs above and below the given OM). To calculate the

number of muons seen by the detector, noise is subtracted and the signal missed as a result of an

efficiency � �#	
	
% is added to the signal recorded by each OM. This method is most precise for the

OMs located close to the center of the detector.
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The largest uncertainties in the simulation chain come from the photon propagation and

detector signal simulation. These are estimated to be 15% for absolute OM sensitivities and 20% for

optical properties of ice. A method presented in Chapter 4 attempts to make the flux measurement

insensitive to these uncertainties.

Several energy reconstruction techniques (calibrated with Monte Carlo simulations) have

been used to reconstruct cosmic ray and muon energy spectra with AMANDA [20, 21, 22]. These

methods use simulated data twice: to calibrate the energy reconstruction method, and then to build

the kernel for the unfolding algorithm. In this work, simulated data are only used once in a way

which places the main emphasis on reduction of systematic uncertainties. Results are quoted with

much smaller uncertainties than in previous works.
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Chapter 2

Air Shower Generation with CORSIKA

- Second things first -

2.1 Introduction

In order to simulate the AMANDA-II muon background, which for the purpose of this

work is the actual signal, protons and heavier nuclei are generated at the top of the atmosphere and

propagated down to the Earth’s surface using the air shower generator CORSIKA [23]. The resulting

air showers contain muons and neutrinos, which are propagated through the ice to the detector.

Neutrinos occasionally interact with ice or underlying bedrock producing muons; however, their

signal is typically four orders of magnitude lower than signal from muons created in the atmosphere

(see, e.g., [24]) and is ignored in this work. Cherenkov photons created in the ice by high-energy

muons are propagated to optical receivers. This results in Monte Carlo simulated data, which are

compared to the experimental data.

This section discusses modifications to CORSIKA that were made to ensure an accurate
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representation of the conditions of the AMANDA-II experiment.

2.2 CORSIKA settings

The air shower generator used to simulate AMANDA-II data is based on CORSIKA (ver-

sions 6.018 and 6.020). All six high-energy interaction models QGSJET, VENUS, NEXUS, DPM-

JET, HDPM, and SIBYLL [23, 25] (see Table 2.1 for comparison of basic features) available with

CORSIKA were tested.

Table 2.1: Basic features of hadronic interaction models (from [26]). Execution times are given for
1 GHz P3 computer with optimal AMANDA-II settings determined in this chapter: � � ��� � ��� � � $�	
	
GeV, � � � � � � � �%)��

GeV. Model features and assumptions listed in the first column are explained in
[27].

QGSJET VENUS NEXUS DPMJET HDPM SIBYLL
Gribov-Regge + + + +
Minijets + + + +
Sec. Interactions + +
N-N Interactions + + + +
Superposition + +
Max. Energy (GeV) �

�#	 - - � � �#	 � � � �#	�� �
�#	 - - �#	��

�
�#	 - -

CPU time/shower (ms) 0.8 30 365 73 1.6 1.1

Cosmic rays with their energy spectra (parametrized as ��� 4 � 7 � � � � � ��� for ��� H
�����

Fe)

and relative abundances from [1] (Appendix A) were used as primaries in CORSIKA.

The zenith-angle distribution function of primaries was changed from the default for a flat

detector to � � � ��� � 4��	�%+ ��

��� ��� �%� � � ������� � 7 for a cylindrical detector with radius � and length �

(Figure 2.1). This modification better represents the AMANDA-II detector geometry and simplifies

the following analysis.

In order to save disk space and computing time the detailed Monte Carlo simulation of

e-m cascades can be substituted with the results of the Nishimura, Kamata, and Greisen (NKG)



11

θ

r

l

Figure 2.1: Zenith-angle dependent geometrical area of the detector

analytical description of the electromagnetic shower, only recording the age parameter � and number

of particles ��� . The average distribution of particles on the observation level can then be obtained

from the NKG formula, as given in [23]:

� � � � �� �	� +� � � � +�
� 4 �����
� � 7� 4�� 7 � 4 ����� � � � 7 4

�
� � � ��� �

7 � �,+ 4 � � �
� � � ��� �

7 � � 
	� � ,

where � � � 	��0)�� � 	������ � , � � ��� ��
 ��$
� ��� � �,+ 
 � � � � = Moliere radius. This approach can be used

to correlate the muon signal with the e-m component at the surface. It neglects the photoproduction

of pions and may lead to some loss in number of secondaries. As of version 6.020 of CORSIKA,

however, it can only be used together with the flat atmosphere approximation.

Profiles of the atmosphere at the location of the South Pole were generated with the MSIS-

E-90 (Mass Spectrometer and Incoherent Scatter Extended Model) program (available at [28]) for

March 31, July 1, October 1, and December 31 (Figure 2.2). No significant change for each season

from year to year (1997 to 2001) was found. October 1 and March 31 represent the typical behavior

over the year, the October profile being taken as the default for the background muon simulation.
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Figure 2.2: Comparison of four South Pole atmospheres

To determine the magnetic field, a National Geophysical Data Center (NGDC) program

(available at [29]) was used. For the South Pole on January 31, 1998 a field of 55911 nT with the

declination of
� �%) � � �/�(	��

(from a zero meridian) and inclination of
� )�� �#� �������

was obtained. No

significant variation from these values during years 1997 to 2001 was observed.

2.3 Zenith angle distributions

The CORSIKA frame of reference is mapped into the detector frame. This is not neces-

sary if the surface of the Earth can be considered flat. The muons which travel at angles affected

by this transformation (above � � � � �
) have to travel through more than 45 km of ice (48.7 km

for a flat surface geometry) to reach the detector. As follows from the results of Section 2.4, less

than 0.1% of muons with energies as high as 26.6 PeV can penetrate through this much ice. From

Section 3.7 the typical energy of a muon that travels this far is
����� � �#	 + � eV. While irrelevant to
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the background muon analysis, a correct treatment of these muons may be required for ultra-high

energy (UHE) analysis of the AMANDA-II data. Additionally, it allows a mapping of the good

CORSIKA region that exhibits no suppression (due to shower propagation algorithm imperfections,

[30],
	 �

to
� �/��$%)��

) into the whole range of zenith angles from
	��

to 
 	 � in the detector frame (Figure

2.3).

����� � � � ����� � �%4 � ��� 
 � 7

α

θ
θc

d

y

R

x

z

h

Figure 2.3: CORSIKA ( � � ) to detector ( ��� ) angle mapping

All shower coordinates and angles are transferred from the CORSIKA (c) frame of refer-

ence to the detector (d). To ensure that the magnetic field direction is described as well as possible,

the CORSIKA frame is chosen so as to match the detector frame by one rotation by � , performed

around the center of the Earth. The coordinate transformation between the two frames can be written

as
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Here � is the azimuth angle of the primary. The values of � � , � � are randomized inside the projection

of the cylinder of the detector on the surface of the Earth made along the direction of the primary.

CORSIKA coordinates ( � � , � � , � � ) are given inside the plane tangent to the surface of the Earth at

an intersection point of the shower core with the surface, therefore � � � 	
. Once in the detector

frame, all particles are propagated from the tangent plane to the surface of the Earth. A similar

transformation was applied to the angles at which particles enter the surface. The change in the

magnetic field direction introduced by this transformation is given by the rotation angle � , the

maximum value of � in the upper hemisphere being
��� � �

.

To preserve the correct (isotropic) angular distribution of the primaries, the zenith an-

gle is first determined by CORSIKA at random in the detector frame ( � � ) and then translated

into the internal CORSIKA angle ( � � ). This translation is enabled by the new INPUTS file (see

Appendix F.1) flag “SCURV T 6.4E8 1.73E5”. The shower core location is randomized by pro-

gram “ucr” with a “-curved=[1-4]” flag. To apply curved randomization,“ucr” is run with the fol-

lowing flags: “-LENGTH=[l] -RADIUS=[r] -HEIGHT=2834 -EARTHR=6.4e6 -DEPTH=[1730 or

1695] -curved=4 -cutth=85”. This enables 2x oversampling of muons coming from zenith angles
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�
� � � � � 
 	 � thus including primaries with � � 
 	 � into the analysis. Some of these upgoing

primaries create a number of downgoing muons through scattering or by being deflected in the mag-

netic field. The ratio � 
 � must correspond to the ratio � 
 � � � 
�� � specified by the flag DETCFG in

the INPUTS file.

Since the same angle � � can translate into two different angles ��� , it is possible to generate

upgoing flux at the shower core randomization stage (by “ucr”) from the same CORSIKA files as

downgoing. Options “-curved=4 -cutth=[ � � 	�� ]” allow one to oversample (x2 on top of the existing

oversampling number set by “-over=[number]”) events originating from primaries with zenith an-

gles � � 	���� � � 
 	 � in the detector frame. This allows one to generate reliable results with only

slightly bigger Monte Carlo files (and almost no increase in execution time, since “ucr” is extremely

fast).

Figure 2.4 shows the muon zenith angle distribution for angles from
	 �

to
����	 �

. The

distribution looks somewhat symmetric (around 

��� � � 	
) because each event was used twice:

once as downgoing and once as upgoing (this is enabled by the “-curved=4 -cutth=0” options). The

number of entries in the distribution follows
�

 

��� � at small angles (according to [31]) and flattens

at the horizon which is consistent with the following facts.

The number of created muons is proportional to the pion mean free path at the top of the

atmosphere. This increases as
�

 

��� � only at small zenith angles, slowing down near the horizon.

A 400 GeV muon has a decay length of 2500 km. Such a muon is on average produced

at an altitude of 24 km or higher for larger zenith angles. A horizontal muon travels more than 550

km before entering the ice. It has at least a 20% chance of decaying before entering the detector.

This probability depends exponentially on the traveled distance and grows fast for zenith angles
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Figure 2.4: Muon zenith angle distribution from
	��

to
����	 �

approaching 
 	 � . A small reduction of the muon flux at the horizon is therefore expected.

The muon energy loss is proportional to the mass overburden of air it crossed. This mass

overburden grows from 7 mwe1 (at the South Pole) for a vertical muon track to 149 mwe for a

horizontal track. A 400 GeV muon traveling to the surface loses on average 2.8 GeV for a vertical

track and 60 GeV for a horizontal track. If a constant muon energy threshold is maintained for all

zenith angles, then the number of muons left with energies above this threshold after propagating

to the observation point is smaller at larger zenith angles. For the muon energy distribution with

spectral index 2.7 to 3.7 the reduction of integrated muon flux for �2� 	 �
is 1.2% to 1.9%, while for

�

Meters of water equivalent.
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�5� 
 	 � this reduction is 21% to 31%. Clearly, this further reduces the number of horizontal muon

tracks, while leaving the number of vertical muon tracks almost unchanged.

2.4 Optimization of CORSIKA settings

CORSIKA allows the user to filter out events in which the primary has insufficient energy

to produce a muon that would reach the detector. This feature saves computational time and disk

space and is enabled by the “LOCUT T” flag. It is also possible to remove muons (and whole events

containing only such muons) that are in the CORSIKA output but cannot reach the detector. This

mainly saves disk space and can be done at the shower core randomization (“ucr”) stage using the

“-cutfe=[ � ����� ]” flag.

The energy of a muon is compared to the function � �
	 � 4
� 7 of the ice thickness � , which is

the minimum energy the muon is required to have to reach a certain depth
�

. During the CORSIKA

step the energy of the muon for such comparison is assumed to be smaller than some fraction � of

the energy of the primary. The depth
�

is determined from the condition � �
	�� 4 � 7 � � ����� , where

� � ��� is the energy below which muons are not recorded by CORSIKA (specified by “ECUTS [ � � ��� ]

�����
” flag in the INPUTS file) or the value of the “-cutfe=[ � ����� ]” flag used by “ucr” (usually equal to

the first argument of the “ECUTS” flag in the corresponding INPUTS file).

The slant depth � is given by
� 
 

��� � where � is the zenith angle of the particle (muon

or primary) in the CORSIKA frame of reference. This is a good value even when the surface of

the Earth is considered curved as it consistently filters out particles that cannot reach a spherical

subsurface located at the depth
�

below the Earth’s surface.

To determine the function � �
	�� 4
� 7 , MMC (see Chapter 3) was run for ice as propagation
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Figure 2.5: Muon range distributions in ice
Figure 2.6: Distance in ice vs. fraction of sur-
vived muons

medium, with muon energies from 105 MeV to
�#	 + � eV. For each energy

�#	 � muons were propa-

gated to the point of their disappearance and the distance traveled was histogrammed (Figure 2.5).

This is similar to the analysis done in Chapter 3.7 (also in [32]). However, instead of the average

distance traveled, the distance at which only a fraction of muons survives was determined for each

muon energy (Figure 2.6). Two fixed fractions were used: 99% and 99.9%. MMC was run with 2

different settings: � �
	�� � �#	 �,+ with the cont (continuous randomization feature described in Chap-

ter 3.3.2) option and � �
	�� � �#	 � � without cont. In Figure 2.7 the ratio of distances determined with

both settings is displayed for 99% of surviving muons (red line) and for 99.9% (green line). Both

lines are very close to 1.0 in most of the energy range except the very low energy part (below 2 GeV)

where the muon does not suffer enough interactions with the � �
	�� � �#	 �,+ setting before stopping

(which means � � 	�� has to be lowered for a reliable estimation of the shape of the travelled distance

histogram). The ratio of 99% distance to 99.9% distance is also plotted (dark and light blue lines).

This ratio is within 10% of 1, i.e., 0.1% of muons travel less than 10% farther than 1% of muons.
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surviving fraction and MMC configuration
settings

Figure 2.8: � + of the fit as a function of fit
boundaries

The value � � 	�� � �#	 � � with no cont setting, used to determine the maximum range of the

99.9% of the muons, was chosen for the estimate of the function � �
	�� 4
� 7 . The function

��� ��� ��� 4 � � � � � � 
 � 7�
 � �

which is a solution to the equation represented by the usual approximation to the energy losses:

�*� 
 ��� � � � � � , was fitted to � � 	�� 4
� 7 . In Figure 2.8 the � + of the fit is plotted as function of the

lower (green) and upper (blue) boundaries of the fitted energy range. Using the same argument as

in Chapter 3.7 the lower limit is chosen at just below 1 GeV while the upper limit was left at
�#	 - -

GeV. As seen from the plot, raising the lower boundary to as high as 400 GeV would not lower the

� + of the fit (and the root mean square of the deviation from it), so the lower boundary was left at

1 GeV for generality of the result. The fit is displayed in Figure 2.9 and the deviation of the actual

��� from the fit is shown on Figure 2.10. The maximum deviation is less than 20%, which can be

accounted for by lowering � and
�

by 20%. Therefore, the final values used in CORSIKA and “ucr”



20

for the function

� �
	�� 4
� 7 � 4�� ��� � � 7 � 
 �

are � � 	������ � 
/����� GeV
mwe

and
� � 	����
��� � �#	 � � 
/�����

�
mwe

.

The distances obtained with these values for four different muon energies are shown by red solid

lines in Figure 2.5. The distances obtained with values of � and
�

not containing the 20% correction

are shown with green dashed lines.

dE/dx=a+bE
a =  0.212  [ GeV/mwe ],
b =  0.251 ⋅ 10-3  [ 1/mwe ]
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Figure 2.9: Fit to the � �
	 � 4
� 7 Figure 2.10: Deviation of the � �
	�� 4
� 7 from
the fit

To determine the fraction � of the energy threshold of primaries ( � ����� � � � � ) above which

99% or 99.9% of muons are produced (Figure 2.11), more than
�#	 �

showers were generated for

AMANDA-II with � � � � � ��� � � � ����� � � from 1 GeV to
�#	 - - GeV. The number of simulated muons

is shown on Figure 2.13 with a black dashed line (scale to the right of the plot). This number

normalized to
�#	 �

showers is shown in red. The fractions � 4�
 
 � 7 and � 4�
 
 � 
 � 7 are shown by

green-dotted and blue-solid lines, respectively. For � � � � � ��� � for which less than 100 muons were

generated, the energy of the second lowest energy muon is used to determine the 99% fraction, same
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Figure 2.12: Ice density profile correction

for � � � � � ��� � for which less than 1000 muons were generated, used to determine the 99.9% fraction.

The lowest ratios were found to be

� �
	 � 4�
 
 � 7 � �/�(	%$
and � �
	�� 4�
 
 � 
 � 7 � ����� �

.

These ratios can be used to determine the value of the first argument to “ERANGE” in the INPUTS

file once the muon energy threshold ( � � � � � � ) has been set by the first argument to the “ECUTS”

flag.

It is also possible to use different energy thresholds ( � ����� ) for different primaries (i.e.,

proportional to the atomic weight of the primaries). As can be deduced from Figure 2.14, 99.9%

of muons above � ����� � � � ��� �
GeV are produced by primaries with energies above � ����� � ��� � �

����� � � � ��� � � � , where � is the atomic weight of the primary. Figures 2.15 and 2.16 show the ratio

� � ��� � ��� � 
 � ����� � � � for He and Fe. The lowest recorded values of � ����� � ��� � 
 4 � � ����� � � 7 for He and Fe

are 1.51 and 1.41, respectively, for the 99.9% ratio. These values are lower than the 1.58 chosen for
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Figure 2.16: Ratio of the primary to muon
energies for He

the mixture of primaries. For He, most values are above 1.58 with only two below (1.51 and 1.57).

Values of the ratio for Fe are consistently lower than 1.58. However, the number of muons produced

by Fe (and other primaries from Li to Mn) above 238 GeV is nearly two orders of magnitude smaller

(it amounts to only 3.6%) than those produced by H and He. Therefore, having merely 99% ratios
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above 1.58 (1.80 for He and 1.65 for Fe) should be sufficient to maintain the overall ratio above

1.58 for the mixture of primaries when energy cutoffs of primaries are chosen proportional to their

atomic weight (just as when energy cutoffs of different primaries are kept the same).

In the above plots low statistics at high energies do not allow one to determine the 99.9%

ratio reliably for energies higher than 20 TeV. Extrapolating from the lower energy region, however,

it seems that it never gets below 1.58, since the ratio appears to be constant or even rising (for Fe,

see Figure 2.15) with energy.

To choose energy thresholds proportional to the atomic weight of the primaries, specify

”SPRIC T” in the INPUTS file. Doing so reduces fluxsum,��� ���� �	��
 ��� �
�
4 � 7 �*� ,

from 0.793 m �,+ sr �.- s �.- to 0.359 m �,+ sr �.- s �.- (for energy threshold for primaries of 376 GeV),

increasing the lifetime of Monte Carlo files by a factor of 2.2.

2.5 Density depth correction

Due to the lower density of ice packed with air bubbles in the first 200 meters below the

surface, muons lose less energy while propagating down than with the constant ice density depth

profile [33]. To account for this, the exact density profile (Figure 2.12) is approximated by a constant

density profile starting 35 meters below the surface (represented in Figure 2.12 by red dashed lines)

so that the area under both the actual and artificial profiles is the same.

The muon cross sections in a medium are mostly proportional to the density multiplied

by the traveled distance (i.e., mass overburden), with two exceptions. First, the density correction

and dielectric suppression effects have more complicated density dependence, but are generally
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very small (below 1%). Second, decay probability is proportional only to the distance (not mass

overburden), but is quite small for the interesting muons traveling through 35 m/ 

��� � of ice, because

these muons still have about 1.5 km/ 

��� � of ice to travel through to reach the detector, i.e., they

must have quite high energy, thus suppressing the decay probability (which is inversly proportional

to energy). Neglecting these effects, a muon traveling through a 200 m ice layer with a measured

density profile is equivalent to the muon traveling through a 165 m artificial ice layer with constant

density profile.

In the above argument the surface of ice was assumed flat in the CORSIKA coordinate

system. This is a good approximation, because the muon traveling through
� � �
�

m of ice at the

maximum in the CORSIKA frame angle of � � � � � � �/��$%)��
goes only ��� � ����� � � � �����

km away

from the point where it enters the ice, and deviation of the surface of ice from flat at that distance is

only � 4�

��� � �6� 7 � � � + 
�� � � � + 
�� � � ���
cm. To make the treatment precise, after reaching

the ice surface, muons are transported to the spherical subsurface 35 m below the ice surface and

then through the rest of ice (with uniform density) to the detector.

2.6 Discussion of optimizations

Taking for the density-corrected AMANDA-II center depth a value of
� � � )���	2� �
� �

� $ 
 � m, ice density � � 	�� 
 � ) g/cm � , and effective dimensions of AMANDA-II � � �%	
	
m and

� � ��	
	
m, one gets for the muon energy threshold ������� �3� �
	 � 4 � � 4 � � � 
��%7 7 �3� �
	 � 4 �
��� � mwe

7 �
��� �

GeV. The corresponding value of the energy threshold of the primaries is 490 GeV for 99%

of muons recorded and 376 GeV for 99.9% of muons recorded. If instead of the dimensions of the
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effective detector cylinder the � -coordinate2 of the shallowest OM in AMANDA-B103 of 231.5 m

is used (also usually used to estimate geometrical dimensions of AMANDA-II), one gets � � ���6�
� � 	�� 4 � � �*� mwe

7 � �%)��
GeV for muons and 563 GeV (99%) or 432 GeV (99.9%) for primaries.

It could be possible to further raise these numbers if the lowest energy of muons at which they

generate light, which can be recorded by the detector, were known. For the calculation above, it is

assumed to be close to the rest mass of the muon, since for the muon to generate Cherenkov light

its energy can be as low as � 160 MeV. To summarize, the suggested energy cuts are presented in

Table 2.2.

Table 2.2: AMANDA-II-optimized CORSIKA energy cuts

400 m above the detector center
fraction � ����� for muons � ����� for primaries

99% 238 GeV 490 GeV
99.9% 238 GeV 376 GeV

231.5 m above the detector center
fraction � ����� for muons � ����� for primaries

99% 273 GeV 563 GeV
99.9% 273 GeV 432 GeV

Execution time and file size (for
�#	 � primaries on a 1 GHz computer) are summarized in

Table 2.3.

A run with
�#	 � primaries with � � ��� � ��� � � �%)�$

GeV corresponds to 0.0266 seconds of

lifetime of the detector with dimensions ��� ��	
	
m and � � �%	
	

m. Using the angle-dependent

energy cut for primaries accelerates the program by a factor of 3. If additionally the option “-

cutfe=[ � ����� ]” is used with “ucr”, and only primaries and muons are saved, only 20% of disk space

is used compared to the run with no such cuts. Setting the primary cutoff to � � � � � �
$��
GeV

�
As measured upward from the center of AMANDA-II, which is defined to be 1730 m below the ice surface.�
A part of AMANDA-II, which consists of only 10 strings, see Figure 1.4.
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Table 2.3: Comparison of execution time and file size for LOCUT T/F

settings LOCUT F LOCUT T
time 55 min 18 min
size 131 Kb 97 Kb

size (only muons) 113 Kb 84 Kb
after “ucr” with “-cutfe=[ � � ��� ]”
size 42 Kb 42 Kb

size (only muons) 24 Kb 24 Kb

increases the lifetime of the above run to 0.0527 seconds (with no change in execution time).

2.7 Geometrical area optimization

To determine the optimal dimensions of the cylinder around the detector to be used for the

background muon simulation,
� � �#	 - � primaries with energies above � ����� � ��� � � �%)�$

GeV (muon en-

ergy cutoff at � � ��� � � � �%)��
GeV) were generated with CORSIKA for the detector with dimensions

800 m � 400 m (length � radius). The corresponding detector lifetime is 1.5 hours. AMANDA-II

background simulation (“mass01v002” with mam ice model) produced 287346 triggers. The frac-

tion � of the number of events with tracks, which produce hits during these events, left outside of

the cylinder around the detector was calculated for different dimensions of this cylinder. This frac-

tion is plotted on Figure 2.17 as a function of radius and length. The blue contours correspond to

� � �#	 �.- to
�#	 � � . The green contours correspond to the constant areasum

��� +�
�
4��	� + � 

��� � � � � � ��� ����� � 7 � ��� � � + � 4 � � � 7

(in km + sr). For each choice of � , one should select cylinder dimensions which minimize the area-

sum. The lowest values of � appear to lie in the four corners of the plot. The plot is symmetrical

around � � 	
(
� � is the same as � ). A positive value of the detector length assumes a fixed bottom
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at -400 m, and a negative value of the detector length assumes a fixed top at 400 m. Therefore the

actual number of tracks outside of the cylinder with chosen dimensions is 1 to 2 times larger than

the contour value in the plot. If a track misses both the top and bottom parts for some fixed radius, it

misses the whole detector with that radius; however, the track could be contained between the value

of the used radius and the maximum radius of 400 m.
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Figure 2.17: Fraction of the events left outside of the detector cylinder

For each fixed fraction areasum was minimized. The length and radius which minimize

it are plotted as a function of the fraction � in Figure 2.18. The values of length and radius are

matched values for each fraction and each part of the detector (top and bottom). Values � � � ����	
m

and ��� � 
 	 m for the top part and � � � � �%	
m and � � ��	
	

m for the bottom part of the detector

both correspond to no more than
����� � �#	 � � of tracks which missed the cylinder of the detector;

recalculating for ��� � ��	
m and �9� ��	
	

m of the whole detector (both top and bottom parts)

one gets
���0) � �#	 � � of tracks missed. It is convenient to use values � � $�	
	

and � � ��	
	
(which

correspond to fraction
��� � � �#	 � � ) instead, since they are compatible (ratio � 
 � � � 
�� � is the same)
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Figure 2.18: Optimal dimensions of the detector cylinder for background muon simulation

with settings � � ��	
	
and � � �%	
	

used by the rest of the AMANDA-II simulation (CORSIKA files

are the same before randomization; areasum only depends weakly on � , changing by 15% when

replacing 480 m with 600 m). Using these new settings (as compared to the default settings of

��� ��	
	
and ��� �%	
	

) increases the lifetime of each run by a factor of 1.8 at the cost of increasing

the fraction of missed tracks by one order of magnitude.

Figures 2.19 and 2.20 show the zenith angle and energy distributions of primaries at the

trigger level. The highest value of the zenith angle is 83.8 degrees, at which the deviation of the

surface of the Earth from flat is only 0.12%, i.e., the flat approximation is clearly acceptable (the

curved surface is used for simulated data in this work nevertheless). The energy spectrum shows

a threshold at just above 600 GeV. A cutoff at high energies (at just above
�#	 �

GeV) is due to the
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Figure 2.19: Zenith angle distribution of pri-
maries at the trigger level

Figure 2.20: Energy distribution of primaries
at the trigger level

energy spectrum of primaries falling fast with energy.

All events in Figure 2.17 with primaries (shower cores) missing the cylinder with large

dimensions (e.g., � � $�	
	
m � �5� $�	
	

m) have at least one muon (Figure 2.21) passing much closer

to the detector than its shower core. However, even if the coordinates of the highest energy muon

are randomized inside the cylinder projection instead of those of the shower core, some events will

still miss the smaller cylinder (with the dimensions given above), with the main contribution to the

trigger coming from a smaller energy muon which passes much closer to the detector (Figure 2.22).

2.8 Energy cut optimizations

To determine the lowest energy of a primary which can produce a muon that triggers the

detector, the fraction � 4 � 7 of such primaries with energies below some energy � was plotted as

a function of � (Figure 2.24). The fraction � 4 � 7 shows a cutoff behavior and was fit with the 3-

parameter function ��4 � 7 � 4 � 4 � � � �
	�� 7 7 � . Table 2.4 summarizes results of an extrapolation of
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The size of the circles around OMs signifies the signal amplitude in those OMs,
the color shows signal arrival time: blue is earlier, red is later

Figure 2.21: Event with
shower core outside the cylin-
der with dimensions � � $�	
	
m ���5� $�	
	

m

Figure 2.22: Event with high-
est energy muon outside the
cylinder with dimensions � �$�	
	

m ��� � $�	
	
m

Figure 2.23: Con-
tribution from low
energy muon to
trigger condition

the fit to fractions
�#	 � � , �#	 � � , and

�#	 � � .

Table 2.4: Primary energy cutoff

ice model
�#	 � � �#	 � � �#	 � �

stdkurt 676 GeV 622 GeV 600 GeV
mam 711 GeV 625 GeV 568 GeV

If energy thresholds of primaries are chosen to be proportional to the atomic weight A,

the energy threshold divided by A must be evaluated. It is essentially the same (shown in Table 2.5)
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Figure 2.24: Primary energy cutoff (using
mam ice model)

Figure 2.25: Muon energy cutoff (using
mam ice model)

as the constant (for all A) energy threshold values of Table 2.4. To minimize � � ��� � � , energies of all

muons producing secondary showers within the active volume of the AMANDA-II detector (chosen

here as a cylinder with � � ��	
	
m � � � ��	
	

m) were translated into the energies that they would

need to have to reach the same depth going straight down. The minimum (
�#	 � � fraction) � ����� � �

energy is 287 GeV (inferred from Figure 2.25), independent of the ice model (Table 2.5). Assuming

� � ��� � � � � �%)
GeV, energies of all primaries were multiplied by � ����� � � 
 4 � � �
	�� � � 4
� 7 7 to determine

� � ��� � ��� � . The
�#	 � � fraction is achieved with 498 GeV and 578 GeV for the mam and stdkurt4 ice

models respectively (Table 2.5).

Table 2.5: Primary-weight dependent energy cutoffs,
�#	 � � fractions

ice model � �
	�� � � � � � � � 
 � � ����� � � � ����� � ��� � 
 �
stdkurt 631 GeV 287 GeV 499 GeV
mam 624 GeV 287 GeV 578 GeV

�

A brief description of the ice models used in this work is provided in Appendix E.1.
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The ratios of � � � � � ��� � 
 � ����� � � are 1.75 for stdkurt and 2.02 for mam ice models. These

numbers are greater than the 99.9% ratio suggested in the Section 2.4. Since they differ considerably

for different ice models, a safe choice would be to use the value 1.58 from the Section 2.4 (which is

independent of ice models). Using ������� � � � � �%)
GeV one gets � � � � � ��� � 
 � � �*���

GeV. This value

is considerably lower than � �
	�� � � � � ��� � 
 �'� $
� �
GeV of Table 2.5.

A more precise calculation of the energy threshold of muons presented in Table 2.6 (also

dependent on ice model) considers only muons which produce photons (or secondary showers which

produce photons) which hit detector OMs within the trigger window. The cutoff energies are given

for three cases: (1) all OMs are considered, (2) only OMs with � -coordinate below 400 m are

considered, and (3) only OMs with � -coordinate below 231.5 m are considered. In the first case

muons with energies as low as 242 GeV caused OM hits (second OM on string 17 in Figure 2.23),

which is just above the threshold used (238 GeV), chosen with only OMs below 400 m in mind.

Table 2.6: Energy thresholds for muons producing light in the active volume of the AMANDA-II
detector

ice model below 231.5 m below 400 m all hits�#	 � � values
stdkurt 335 GeV 307 GeV 246 GeV
mam 348 GeV 322 GeV 247 GeV

lowest recorded (approx.
�#	 � � ) values

stdkurt 322 GeV 287 GeV 239 GeV
mam 338 GeV 311 GeV 242 GeV

� ����� � � ,
�#	 � � values

stdkurt 298 GeV 279 GeV 234 GeV
mam 312 GeV 305 GeV 227 GeV

The cutoff of � � ��� � � � �%)��
GeV introduced in Section 2.6 is clearly acceptable as long

as only OMs below 400 m are taken into account. If string 17 or uppermost OMs on strings 11-13
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are to be included5 in the analysis, this setting is no longer sufficient and has to be decreased to 227

GeV.

It is possible to specify the ratio � � ��� � ��� � 
 � ����� � � independently of the primary energy

threshold as a second parameter to the ”LOCUT T 1.58” flag in the INPUTS file. Settings recom-

mended for the AMANDA-II background simulation are � �
	�� � � � � � � � 
 � � $�	
	
GeV, � � � � � � � �%)��

GeV, LOCUT(2)=1.58, cylinder length=600 m, radius=300 m, and � 
 � � �
. These will result in

less than
�#	 � � of triggered events unaccounted for (about

�#	 � � with � � ��	
	 ��� � �%	
	
, which was

chosen for simulated data of this work). The lifetime of a run with
�#	 �

primaries is 2.369 seconds.

Due to the angle-dependent energy threshold of primaries ( � ����� � � � � , set by ”LOCUT T

1.58”), CORSIKA execution time per second of generated lifetime depends only weakly on the

energy threshold of primaries ( � � 	�� � � � � ��� � ), which can therefore be further lowered below the rec-

ommended value of 600 GeV. Table 2.7 summarizes the execution time and lifetime of a CORSIKA

run with
�#	 � primaries.

Table 2.7: Execution speed and lifetime of CORSIKA runs

� �
	�� � � � � ��� � 600 GeV 500 GeV 432 GeV
execution time, s 1233 1080 866

lifetime, s 0.2014 0.1464 0.1133
ratio (exe/life) 6125 7375 7644

�

String 17 and parts of strings 11-13 contain OMs at depths significantly shallower than the majority in the detector,
and are excluded for some types of analyses.
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Chapter 3

Muon Propagation through Ice

- Easier done than said -

3.1 Muon Monte Carlo: a new high-precision tool for muon propaga-

tion through matter

An accurate simulation of the propagation of muons through large amounts of matter is

needed for the analysis of data produced by muon/neutrino underground experiments. A muon may

sustain hundreds of interactions before it is detected by the experiment. Since a small uncertainty

introduced hundreds of times may lead to sizable errors, requirements on the precision of the muon

propagation code are very stringent. A new tool for propagating muon and tau charged leptons

through matter that is believed to meet these requirements is presented here. The latest formulae

available for the interaction cross sections were used and the reduction of calculational errors to a

minimum was the top priority. The tool is a very versatile program written in an object-oriented

language environment (Java). It supports many different optimization (parametrization) levels. The
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fully parametrized version is as fast or even faster than the counterparts. On the other hand, the

slowest version of the program, which does not make use of parameterizations, is fast enough for

many tasks if queuing or distributed environments with large numbers of connected computers are

used. In this chapter, an overview of the program is given and some results of its application are

discussed.

3.2 Introduction

In order to observe atmospheric and cosmic neutrinos with a large underground detector

(e.g., AMANDA [12]), one needs to isolate the neutrino signal from the 3-5 orders of magnitude

larger signal from the background of atmospheric muons. Methods that do this have been designed

and proven viable [24]. In order to prove that these methods work and to derive indirect results such

as the spectral index of atmospheric muons, one needs to compare data to the results of the computer

simulation. Such a simulation normally contains three parts: propagation of the measured flux of

the cosmic particles from the top of the atmosphere down to the surface of the ground (ice, water);

propagation of the atmospheric muons from the surface down to and through the detector; and gen-

eration of the Cerenkov photons generated by the muons in the vicinity of the detector and their

interaction with the detector components. The first part is normally called generator, since it gener-

ates muon flux at the ground surface; the second is propagator; and the third simulates the detector

interaction with the passing muons. Mainly two generators were used so far (by AMANDA): basiev

[34] and CORSIKA [23]. Results and methods of using CORSIKA as a generator in a neutrino

detector (AMANDA-II) were discussed in the previous chapter (see also [15]). Several muon prop-

agation Monte Carlo programs were used with different degrees of success as propagators. Some
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are not suited for applications which require the code to propagate muons in a large energy range

(e.g., mudedx, a.k.a. LOH), and the others seem to work in only some of the interesting energy

range ( � �
�

TeV, propmu, a.k.a. LIP) [35]. Most of the programs use cross section formulae

whose precision has been improved since their time of writing. For some applications, one would

also like to use the code for the propagation of muons that contain
�#	
	�� �#	
	
	

interactions along

their track, so the precision of each step should be sufficiently high and the computational errors

should accumulate as slowly as possible. Significant discrepancies between the muon propagation

codes tested in this work were observed, and are believed to be mostly due to algorithm errors (see

Appendix D). This motivated writing of a new computer program (Muon Monte Carlo: MMC [36]),

which minimizes calculational errors, leaving only those uncertainties that come from the imperfect

knowledge of the cross sections.

3.3 Description of the code

The primary design goals of MMC were computational precision and code clarity. The

program is written in Java, since Java is an object-oriented programming language (for best code

readability) and has consistent behavior across many platforms. MMC consists of pieces of code

(classes), each contained in a separate file. These pieces fulfill their separate tasks and are com-

bined in a structured way (Figure 3.1). This simplifies code maintenance and introduction of

changes/corrections to the cross section formulae and is required by our choice of the program-

ming language. It is also very straightforward to “plug” in new cross sections, if necessary. Writing

in an object-oriented language allows several instances of the program to be created and accessed

simultaneously. This is useful for simulating the behavior of the neutrino detectors, where different
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conditions apply above, inside, and below the detector.

The code evaluates many cross-section integrals, as well as two tracking integrals. All

integral evaluations are done by the Romberg method of the 5th order (by default) [37] with a vari-

able substitution (mostly log-exp). If an upper limit of an integral is an unknown (that depends on a

random number), an approximation to that limit is found during normalization integral evaluation,

and then refined by the Newton-Raphson method combined with bisection [37].
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Figure 3.1: MMC structure

Originally, the program was designed to be used in the Massively Parallel Network Com-

puting (SYMPHONY) [38] framework, and therefore computational speed was considered only a

secondary issue. However, parametrization and interpolation routines were implemented for all in-

tegrals. These are both polynomial and rational function interpolation routines spanned over a vary-
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ing number of points (5 by default) [37]. Inverse interpolation is implemented for root finding (i.e.,

when � 4 � 7 is interpolated to solve ��4
� 7 � � ). Two-dimensional interpolations are implemented as

two consecutive one-dimensional ones. It is possible to turn parameterizations on or off for each

integral separately at program initialization. The default energy range in which parametrized formu-

lae will work was chosen to be from 105.7 MeV (the muon rest mass) to � � ��� � �#	 - 
 MeV, and the

program was tested to work with much higher settings of � � ��� . With full optimization (parameteri-

zations) this code is at least as fast or even faster than the other muon propagation codes discussed

in Appendix D.

Generally, as a muon travels through matter, it loses energy due to ionization losses,

bremsstrahlung, photo-nuclear interaction, and pair production. Formulae for the cross sections

were taken from the recent contribution [18] and are summarized in Section 3.10. These formulae

are claimed to be valid to within about 1% in the energy range interesting for this work (up to �

10 TeV). All of the energy losses have continuous and stochastic components, the division between

which is artificial and is chosen in the program by selecting an energy cut ( � �
	�� , also � � 	�� ) or a rel-

ative energy loss cut ( � �
	 � ). In the following, � �
	�� and � � 	�� are considered to be interchangable and

related by � �
	�� � � �
	�� � (even though only one of them is a constant). Ideally, all losses should be

treated stochastically. However, that would bring the number of separate energy loss events to a very

large value, since the probability of such events to occur diverges as
�

 � � � � � for the bremsstrahlung

losses, as the lost energy approaches zero, and even faster than that for the other losses. In fact,

the reason this number, while being very large, is not infinite, is the existence of kinematic cutoffs

(larger than some � � ) for all diverging cross sections. A good choice of � �
	�� for the propagation of

atmospheric muons should lie in the range
	��(	%�8� 	��"�

[39] (Section 3.4). For monoenergetic beams
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of muons, � �
	�� may have to be chosen to be high as
�#	 � � � �#	 � 
 .

3.3.1 Tracking formulae

Let the continuous part of the energy losses (a sum of all energy losses, integrated from

zero to � �
	�� ) be described by a function ��4 � 7 :
� �*�

��� � ��4 � 7��

x xdxi f

Figure 3.2: Derivation of tracking formulae

The stochastic part of the losses is described by the function ��4 � 7 , which is a probability

for any energy loss event (with lost energy � � �
	�� ) to occur along a path of 1 cm. Consider the

particle path from one interaction to the next consisting of small intervals (Figure 3.2). On each

of these small intervals the probability of interaction is � � 4 � 4
� � 7 7 ����4 � 4
� � 7 7 � � . It is easy to

derive an expression for the final energy after this step as a function of the random number � .
The probability to completely avoid stochastic processes on an interval ( � � ; ��� ) and then suffer a

catastrophic loss on ��� at � � is

4 � � � � 4 � 4
�,� 7 7 7 � ����� �*4 � � � � 4 � 4
��� �.- 7 7 7 � � � 4 � 4
��� 7 7
�����	� 4 � � � 4 � 4
� � 7 7 7 � ����� �
���	� 4 � � � 4 � 4
��� �.- 7 7 7 � � � 4 � 4
��� 7 7

�����	� � � � �
�� � � � 4 � 4
� 7 7�� � � � 4 � 4
��� 7 7
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� � �
� � ��� � 4 � � � �� � ��4 � 7� ��4 � 7 � �*�

7�� � � 4 � � 7 � � � 4 	�� ���

To find the final energy after each step the above equation is solved for � � :
� �
�� � ��4 � 7� ��4 � 7 ��� � � � � ��� 4 � 7 (energy integral).

This equation has a solution if

� � � � �����	� � � � � �
� � � � ��4 � 7��4 � 7 ��� �

� �

Here �
� � � is a low energy cutoff, below which the muon is considered to be lost. Note that ��4 � 7

is always positive due to ionization losses (unless � �
	�� ��� 4	� 7 ). The value of ��4 � 7 is also always

positive because it includes the positive decay probability. If � � � � , the particle is stopped and its

energy is set to ��� � � . The corresponding displacement for all � can be found from

��� � � � � � � �� � �*�
��4 � 7 (tracking integral).

3.3.2 Continuous randomization

It was found that for higher � �
	�� muon spectra are not continuous (Figure 3.3). In fact,

there is a large peak (at � � ����
 ) that collects all particles that did not suffer stochastic losses followed

by the main spectrum distribution separated from the peak by at least the value of � �
	�� � � � ��
 (the

smallest stochastic loss). The appearance of the peak and its prominence are governed by � �
	 � ,

co-relation of initial energy and propagation distance, and the binning of the final energy spectrum

histogram. In order to be able to approximate the real spectra with even a large � �
	�� and to study the

systematic effect at a large � � 	�� , a continuous randomization feature was introduced.

For a fixed � �
	�� or � �
	�� a particle is propagated until the algorithm discussed above finds

an interaction point, i.e., a point where the particle loses more than the cutoff energy. The average
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Figure 3.3: Distribution of the final energy
of the muons that crossed 300 m of Fréjus
Rock with initial energy 100 TeV: � �
	�� �	��(	%�

(solid), � �
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 (dashed-dotted),
� �
	�� � 	��(	%�

and cont option (dotted)

Figure 3.4: A close-up on the Figure 3.3:
� �
	�� � 	��(	%�

(solid), � �
	�� � 	��(	��
(dashed),

� �
	�� � �#	 � � (dotted), � �
	�� � �#	 � 
 (dashed-
dotted)
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. Also shown is the rela-
tive difference of the curves.
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value of the energy decrease due to continuous energy losses is evaluated according to the energy

integral formula of the previous section. There will be some fluctuations in this energy loss, which

are not described by this formula. Let us assume there is a cutoff for all processes at some small

� ��� � � 	�� . Then the probability 
 4�� � � 7 for a process with �
� � ��� � � � � � �
	 � on the distance ��� is

normalizable to 1. Now choose � � so small that


 � � � �������
�	� 
 4�� � � 7 � � ��� �
� �

.

Then the probability to not have any losses is
���

 � , and the probability to have two or more separate

losses is negligible. The standard deviation of the energy loss on ��� from the average value

� � ��� � � �����
��� � � 
 4�� � � 7 � � � � �

is then � 4�
 � 7 + ��� � � + �
� � � � + , where

� � + � � � � �����
��� � + � 
 4�� � � 7 � � ����� .

If the value of � �
	�� or � �
	�� used for the calculation is sufficiently small, the distance � � � � �
determined by the energy and tracking integrals is so small that the average energy loss �5� � � � is

also small (as compared to the initial energy �
� ). One may therefore assume 
 4�� � � 7�� 
 4�� � ��� 7 ,
i.e., the energy loss distributions on the small intervals � � � that sum up to the � � � � � , is the same

for all intervals. Since the total energy loss �8� � � � ��� ��� , the central limit theorem can be

applied, and the final energy loss distribution will be Gaussian with the average 
�� � �2� � � �
and width

� 4�
 4�
�� 7 7 + � � �
�

�
� � +� �

� � ��� � +��
� �

�

� � � � �����
�	� � +� � 
 4�� � � � � 7 � � � � ��� � �

� � � �����
��� � � � 
 4�� � � � � 7 � � � � + � � +���
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� � � �
� �

� � �
� � �������

� � � + � 
 4�� � � 4
� 7 7 � � � � � � �
� �

� � �
� � � �����

� � � � 
 4�� � � 4
� 7 7 � � � + ���
Here � � was replaced with the average expectation value of energy at � , � 4
� 7 . As ��� � 	

, the

second term disappears. The lower limit of the integral over � can be replaced with zero, since all

of the cross sections diverge slower than
�

 � � . Then,

� 4�
 4�
�� 7 7 + �
� � � �

� �
�*�� ��4 � 7 �

� � � �����
� � + � 
 4�� � � 7 � � � .

This formula is applicable for small � � 	�� , as seen from the derivation. Energy spectra calculated

with continuous randomization converge faster than those without (see Figures 3.4 and 3.5).

3.4 Computational and algorithm errors

All cross-section integrals are evaluated to the relative precision of
�#	 � � ; the tracking

integrals are functions of these, so their precision was set to a larger value of
�#	 � � . To check the

precision of interpolation routines, results of running with parameterizations enabled were com-

pared to those with parameterizations disabled. Figure 3.7 shows relative energy losses for ice due

to different mechanisms. Decay energy loss is shown here only for comparison and is evaluated

by multiplying the probability of decay by the energy of the particle. In the region below 1 GeV

bremsstrahlung energy loss has a double cutoff structure. This is due to a difference in the kinematic

restrictions for muon interaction with oxygen and hydrogen atoms. A cutoff (for any process) is a

complicated structure to parametrize and with only a few parametrization grid points in the cutoff

region, interpolation errors 4������ � ���	� 7�
 ���
� may become quite high, reaching 100% right below the

cutoff, where the interpolation routines give non-zero values, whereas the exact values are zero. But

since the energy losses due to either bremsstrahlung, photonuclear process, or pair production are
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very small near the cutoff in comparison to the sum of all losses (mostly ionization energy loss),

this large relative error results in a much smaller increase of the relative error of the total energy

losses (Figure 3.8). Because of that, parametrization errors never exceed
�#	 � 
 � �#	 � � , for the

most part being even much smaller (
�#	 � � � �#	 � � ), as one can estimate from the plot. These errors

are much smaller than the uncertainties in the formulae for the cross sections. Now the question

arises whether this precision is sufficient to propagate muons with hundreds of interactions along

their way. Figure 3.6 is one of the examples that demonstrate that it is sufficient: the final energy

distribution did not change after enabling parametrizations. Moreover, different orders of the inter-

polation algorithm (g, corresponding to the number of the grid points over which interpolation is

done) were tested (Figure 3.9) and results of propagation with different g compared with each other

(Figure 3.10). The default value of g was chosen to be 5, but can be changed to other acceptable

values
� � g � $

at the run time.
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Figure 3.9: Interpolation precision for differ-
ent orders of the interpolation algorithm

Figure 3.10: Comparison of the result of the
propagation for different orders of the inter-
polation algorithm

MMC has a low energy cutoff � ����� below which the muon is considered to be lost. By

default it is equal to the mass of the muon, but can be changed to any higher value. This cutoff

enters the calculation in several places, most notably in the initial evaluation of the energy integral.

To determine the random number �1� below which the particle is considered stopped, the energy

integral is first evaluated from � � to �
����� . It is also used in the parametrization of the energy and

tracking integrals, since they are evaluated from this value to � � and � � , and then the interpolated

value for � � is subtracted from that for ��� . Figure 3.11 demonstrates the independence of MMC

from the value of ��� ��� . For the curve with ��� ���'� ��� integrals are evaluated in the range 105.7

MeV
�

100 TeV, i.e., over six orders of magnitude, and they are as precise as those calculated for

the curve with ������� =10 TeV, with integrals being evaluated over only one order of magnitude.

Figure 3.12 demonstrates the spectra of secondaries (delta electrons, bremsstrahlung pho-

tons, excited nuclei, and electron pairs) produced by the muon, whose energy is kept constant at 10
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Figure 3.11: Comparison of � ����� � ���
(dotted-dashed) with ��� ��� =10 TeV (dotted).
Also shown is the relative difference of the
curves.

Figure 3.12: Ioniz (upper solid curve), brems
(dashed), photo (dotted), epair (dashed-
dotted) spectra for � � =10 TeV in the Fréjus
rock

TeV. The thin lines superimposed on the histograms are the probability functions (roughly cross sec-

tions) used in the calculation. They have been corrected to fit the logarithmically binned histograms

(multiplied by the size of the bin which is proportional to the abscissa, i.e., the energy). While

the agreement is trivial from the Monte Carlo point of view, it demonstrates that the computational

algorithm is correct.

Figure 3.13 shows the relative deviation of the average final energy of the
� � �#	 � 1 TeV

and 100 TeV muons propagated through 100 m of Fréjus Rock1 with the abscissa setting for � �
	 � ,

from the final energy obtained with � �
	�� � �
. Just like in [39] the distance was chosen small enough

so that only a negligible number of muons stop, while large enough so that the muon suffers a large

number of stochastic losses ( �
�#	

for � �
	 � � �#	 � � ). All points should agree with the result for

� �
	�� � �
, since it should be equal to the integral of all energy losses, and averaging over the energy

�

A medium with properties similar to that of standard rock (see Table C.2) used for data analysis in the Fréjus
experiment [40].
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losses for � �
	�� � �
is evaluating such an integral with the Monte Carlo method. There is a visible

systematic shift
� 4 �2� �%7 � �#	 � 
 (similar for other muon energies), which can be considered as

another measure of the algorithm accuracy [39].
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Figure 3.13: Algorithm errors (average energy loss)
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Figure 3.14:
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muons with energy 9 TeV propagated through 10 km of water: regular
(dashed) vs. cont (dotted)

In the case when almost all muons stop before passing the requested distance (see Figure

3.14), even small algorithm errors may substantially affect survival probabilities. Table 3.1 sum-

marizes the survival probabilities for a monochromatic muon beam of
�#	 �

muons with three initial

energies (1 TeV, 9 TeV, and
�#	 �

TeV) going through three distances (3 km, 10 km, and 40 km) in

water. One should note that these numbers are very sensitive to the cross sections used in the calcu-

lation; e.g., for
�#	 �

GeV muons propagating through 40 km the rates decrease 30% when the default

photonuclear cross section is replaced with the ZEUS parametrization (case number four from Sec-

tion 3.10.3). However, the same set of formulae was used throughout the calculation. The errors of
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the values in the table are statistical and are
� &8	��(	
	��

. The survival probabilities converge on the

Table 3.1: Survival probabilities

� �
	�� cont 1 TeV 3 km 9 TeV 10 km
�#	 �

TeV 40 km
0.2 no 0 0 0.153
0.2 yes 0.010 0.057 0.177

0.05 no 0 0.035 0.143
0.05 yes 0.045 0.039 0.139
0.01 no 0.030 0.037 0.142
0.01 yes 0.034 0.037 0.139�#	 � � no 0.034 0.037 0.140�#	 � � yes 0.034 0.037 0.135

final value for � �
	 �
� 	��(	��

in the first two columns. Using the cont option helped the convergence in

the first column. However, the cont values departed from regular values more in the third column.

The relative deviation (3.5%) can be used as an estimate of the continuous randomization algorithm

precision (not calculational errors) in this case. One should note, however, that with the number of

interactions � �#	 � the continuous randomization approximation formula was applied � �#	 � times.

It explains why the value of cont version for � � 	�� � 	��(	��
is closer to the converged value of the

regular version than for � �
	�� � �#	 � � .

3.5 Tau propagation

Taus can also be propagated with MMC. It is recommended that the ALLM parametriza-

tion (Section 3.10.8) be selected for photonuclear cross section. Tau propagation is quite different

from muon propagation because the tau lifetime is 7 orders of magnitude shorter than the muon life-

time. While muon decay can be neglected in most cases of muon propagation, it is the main process

to be accounted for in the tau propagation. Figures 3.15 and 3.16 compare tau energy losses with
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Figure 3.15: Tau energy losses in Fréjus
Rock

Figure 3.16: Sum of tau energy losses in
Fréjus Rock
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Figure 3.17: Average range of taus propa-
gated through Fréjus Rock

Figure 3.18: Same as in Figure 3.17 for tau
energies

�#	 � � �#	��
GeV

losses caused by tau decay (given by ��� 
 4 � ��� � 7 � ��� 
 4 � ��� � � 7 ; this is the energy per mwe de-

posited by decaying taus in a beam propagating though a medium with density � ). Figures 3.17 and

3.18 compare the average range of taus propagated through Fréjus Rock with � �
	�� � �
(completely

continuously) and � �
	�� � �#	 � � (detailed stochastic treatment). Both treatments produce almost
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identical results. Therefore, tau propagation can be treated continuously for all energies unless one

needs to obtain spectra of the secondaries created along the tau track.

3.6 Comparison with other propagation codes

Several propagation codes have been compared with MMC. Where possible MMC set-

tings were changed to match those of the other codes. Figures 3.19 and 3.20 compare the results of

muon propagation through 300 m of Fréjus Rock with MMC and MUM [39] ( � �
	 � � �#	 � � , ZEUS

parametrization of the photonuclear cross section).
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Figure 3.19: Comparison of results of muon
propagation through 300 m of Fréjus Rock
with MMC and MUM

Figure 3.20: Close-up on the end of the dis-
tribution in Figure 3.19

Survival probabilities of Table 3.1 were compared with results from [39] in Table 3.2.

Survival probabilities are strongly correlated with the distribution of the highest-energy muons in

an originally monoenergetic beam. This, in turn, is very sensitive to the algorithm errors and the

cross-section implementation used for the calculation.
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Table 3.2: Survival probabilities of MMC compared to other codes

� �
	�� propagation code 1 TeV 3 km 9 TeV 10 km
�#	 �

TeV 40 km�#	 � � MMC (default) 0.034 0.037 0.140�#	 � � MMC (ZEUS) 0.034 0.037 0.090�#	 � � MUM 0.029 0.030 0.078�#	 � � MUSIC 0.033 0.031 0.084�#	 � � PROPMU 0.19 0.048 0.044

A detailed comparison between spectra of secondaries produced with MMC, MUM, LOH,

and LIP is given in the Appendix D. A definite improvement of MMC over the other codes can be

seen in the precision of description of spectra of secondaries and the range of energies over which

the propagation code works.

3.7 Energy losses in ice and rock, some general results

The code was incorporated into the Monte Carlo chains of two detectors: Fréjus [40, 41]

and AMANDA [35] (also this work). In this section some general results are presented.

The plot of energy losses was fitted to the function �*� 
 ��� � � � � � (Figure 3.21). The

first two formulae for the photonuclear cross section (Section 3.10.3) can be fitted the best, all others

lead to energy losses deviating more at higher energies from this simple linear formula; therefore

the numbers given were evaluated using the first photonuclear cross section formula. In order to

choose low and high energy limits correctly (to cover the maximum possible range of energies that

could be comfortably fitted with a line), a � + plot was generated and analyzed (Figure 3.22). The

green curve corresponds to the ��+ of the fit with a fixed upper bound and a varying lower bound

on the fitted energy range. Correspondingly, the blue curve describes the � + of the fit with a fixed

lower bound and a varying upper bound. The � + at low energies goes down sharply, then plateaus
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dE/dx=a+bE
a=0.259425 [ GeV/mwe ],
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Figure 3.21: Fit to the energy losses in ice Figure 3.22: � + plot for energy losses in ice

at around 10 GeV. This corresponds to the point where the linear approximation starts to work. For

the high energy boundaries, � + rises monotonically. This means that a linear approximation, though

valid, has to describe a growing energy range. An interval of energies from 20 GeV to
�#	 - - GeV is

chosen for the fit. Table 3.3 summarizes the found fits to � and
�
; the errors in the evaluation of �

Table 3.3: Fits to � and
�

for continuous losses (average energy losses)

medium � , GeV
mwe

�
, - ��� �

mwe av. dev. max. dev.
ice 0.259 0.357 3.7% 6.6%
fr. rock 0.231 0.429 3.0% 5.1%

and
�

are in the last digit of the given number. However, if the lower energy boundary of the fitted

region is raised and/or the upper energy boundary is lowered, each by an order of magnitude, � and

�
change by about 1%.

To investigate the effect of stochastic processes, muons with energies 105.7 MeV
� �#	 - -

GeV were propagated to the point of their disappearance. The value of � � 	�� � � � �#	 � � was used
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in this calculation; using the the continuous randomization option did not change the final numbers.

The average final distance (range) for each energy was fitted to the solution of the energy loss

equation � � 
 � � � � � � � :

��� � � ��� 4 � � � � � � 
 � 7�
 �

(Figure 3.23). The same analysis of the ��+ plot as above was done in this case (Figure 3.24). A

region of initial energies from 20 GeV to
�#	 - - GeV was chosen for the fit. Table 3.4 summarizes

the results of these fits.

Table 3.4: Fits to � and
�

for stochastic losses (average range estimation)

medium � , GeV
mwe

�
, - ��� �

mwe av. dev.
ice 0.268 0.470 3.0%
fréjus rock 0.218 0.520 2.8%

dE/dx=a+bE
a=0.217798 [ GeV/mwe ],
b=0.000520421 [ 1/mwe ]
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Figure 3.23: Fit to the average range in
Fréjus rock

Figure 3.24: � + plot for average range in
Fréjus rock

As the energy of the muon increases, it suffers more stochastic losses before it is lost2

�
As considered by the algorithm, here: stopped.
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Figure 3.25: Range distributions in Fréjus rock: solid line designates the value of the
range evaluated with the second table (continuous and stochastic losses) and the broken
line shows the range evaluated with the first table (continuous losses only).

and the range distribution becomes more Gaussian-like (Figure 3.25). It is also shown in the figure

(vertical lines) that the inclusion of stochastic processes makes the muons on average travel a shorter

distance.

3.8 MMC implementation for AMANDA-II

Most light observed by AMANDA-II is produced by muons passing through a cylinder

with radius 400 and length 800 meters around the detector (see Section 2.7 for discussion). Inside

this cylinder, the Cherenkov radiation from the muon and all secondary showers along its track
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with energies below 500 MeV (a somewhat loose convention) are estimated together. In addition

to light produced by such a “dressed” muon, all secondary showers with energies above 500 MeV

produced in the cylinder create their own Cherenkov radiation, which is considered separately for

each secondary. So in the active region of the detector muons are propagated with � �
	�� � ��	
	
MeV,

creating secondaries on the way. This is shown as region 2 in the Figure 3.26.

2

1

3

h1
h2

Figure 3.26: 3 regions of propagation defined for AMANDA-II simulation

In region 1, which is where the muon is propagated from the Earth’s surface (or from under

the detector) to the point of intersection of its track with the detector cylinder, muons should be

propagated as fast as possible with the best accuracy. For downgoing muons, values of � �
	�� � 	��(	%�

with the continuous randomization option enabled were found to work best. These values should

also work for muons propagated from points which are sufficiently far from the detector. For muons

created in the vicinity of the detector, values of � �
	�� � 	��(	��
with cont or even � �
	 � � 	��(	
	��

without

cont should be used.
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In region 3, which is where the muon exits the detector cylinder, it is propagated in one

step ( � �
	�� � ���(	
, no cont) to the point of its disappearance, thus only resulting in an estimate of its

average range.

It is possible to define multiple concentric media to describe both ice and rock below the

ice, which is important for the study of the muons which might be created in either medium in or

around the detector and then propagated toward it.

Although the ALLM parametrization of the photonuclear cross section was chosen to be

the default for the simulation of AMANDA-II, other cross sections were also tested. No significant

changes in the overall data rate or the number of channels ( � ��� ) distribution (important for the back-

ground muon analysis of this work) were found between 5 different parameterizations described in

Section 3.10.3. This is to be expected since for the background muons (most of which have energies

of 0.5-10 TeV on the surface) all photonuclear cross section parameterizations are very close to each

other (see Figure 3.27). Also the effects of the Molière scattering and LPM-related effects (Section

3.10.7) can be completely ignored (although they have been left on for the default settings of the

simulation).

3.9 Conclusions

A very versatile, clearly coded, and easy-to-use muon propagation Monte Carlo program

(MMC) is presented. It is capable of propagating muon and tau leptons of energies from 105.7

MeV (muon rest mass, higher for tau) to
�#	 - - GeV (or higher), which should be sufficient for

the use as propagator in the simulations of the modern neutrino detectors. A very straightforward

error control model is implemented, which results in computational errors being much smaller than
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uncertainties in the formulae used for evaluation of cross sections. It is very easy to “plug in” cross

sections, modify them, or test their performance. The program was extended on many occasions

to include new formulae or effects. MMC propagates particles in three dimensions and takes into

account Molière scattering on the atomic centers, which could be considered as the zeroth order

approximation to true muon scattering since bremsstrahlung and pair production are effects that

appear on top of such scattering. A more advanced angular dependence of the cross sections can be

implemented at a later date, if necessary.

The MMC program was successfully incorporated into and used in the Monte Carlo chains

of the AMANDA and Fréjus experiments. It is distributed at [36] in the hope that the combination

of precision, code clarity, speed, and stability will make this program a useful tool in the research

connected with high energy particles propagating through matter.

Also, a calculation of coefficients in the energy loss formula � � 
 ��� � � � � � and a

similar formula for average range is presented for continuous (for energy loss) and stochastic (for

average range calculation) energy loss treatments. The calculated coefficients apply in the energy

range from 20 GeV to
�#	 - - GeV with an average deviation from the linear formula of 3.7% and

maximum of 6.6%.

3.10 Formulae

This section summarizes cross-section formulae used in MMC. In the formulae below, �
is the energy of the incident muon, while � � � � is the energy of the secondary particle: knock-

on electron for ionization, photon for bremsstrahlung, virtual photon for photonuclear process, and

electron pair for the pair production. As usual,
� � � 
 � and  � � � � � + � �.- � + ; also � is muon
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mass, � � � � is electron mass, and � is proton mass. Please refer to Appendix C for values of

any constants appearing below. Most of the formulae in Sections 3.10.1
�

3.10.4 are taken directly

from [18].

3.10.1 Ionization

A standard Bethe-Bloch equation given in [42] was modified for muon and tau charged

leptons (massive particles with spin 1/2 different from electron) following the procedure outlined in

[43]. The result is given below:

� � �
� � ��� � + �

� � +
� �
� ���

� � � � � +  + � 	 ��� � �
� 4	� 7 +

� � � +�
� � � � 	 ��� � �

� � � �
� �

�
�
�

� 	 ��� � �� � 4 � � �

  7
� + � �� �

where � � � � �
� � � 4  + � � 7

� � �  ���� �
�
���
��� + and � 	 � � � � �
	 ���.4 � �
	 � � � � � � 7 .

The density correction � is computed as for nonconductors:

� � 	 � if � � � �
� � � 4 ��� �#	*7 � �
� � � 4�� - � � 7 � � if � � � � � � -
� � � 4 ��� �#	*7 � �
��� if ����� - where � � � ��� - � 4

�  7

�*+ �
� � ��� �

�
� ��� + ��

�
� +

�
� +

� � � � + �

� � � � �
�
�
�

�

� 4 � � �

  7
� + � .

This formula, integrated from � � � � � -+ ��� �
��� 
�� �� � � + to � 	 ��� � � , gives the expression for energy

loss above, less the density correction and
� + terms (plus two more terms which vanish if � � � � �

� 	 ��� � � ).
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3.10.2 Bremsstrahlung

According to [44], the bremsstrahlung cross section may be represented by the sum of an

elastic component ( � � � , discussed in [45, 46]) and two inelastic components ( 
 � � �� � � ),

� � � � � � 
 � � �� � 
 � � �� .

Elastic Bremsstrahlung:

� � � 4 � ��� 7 � � �
� � � �

�
� � � + � � � � �

� � � � + ��� ����� �
��� �

�
� � 
 � �� � 
 � ���� �

where � � � +	�� � 4 � � � 7 �
is the minimum momentum transfer. The formfactors (atomic 
 � �� and nuclear 
 � �� ) are


 � �� 4 � 7 � � � � � � �
��
 � � � �.- � � 
 � �


 � �� 4 � 7 � � � � � �� � �/4 � �

 � � �%7�

�
� � � � � ����� � � � � + � .

Inelastic Bremsstrahlung:

The effect of nucleus excitation can be evaluated as


 � �� �
�
� 
 � �� � 4	���� � 7

.

Bremsstrahlung on the atomic electrons can be described by the diagrams below; e-

diagram is included with ionization losses (because of its sharp
�

 � + energy loss spectrum), as
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described in [47]: 
 � + �
� � � � �

�
� + �
� � � �

� � � � �� � 4 � 4 � � � � 7�� � + 7

����� ��� 4 � � �
�

 � � 7 � � ��� ��� 4 4 � � �



� � � � 7�
 4 � � �


 � 7 7 �

� ��� ��� 4 4 �  �4 � � �

 � 7 � � 7�
 4 ��� �


 � 7 7 .

The maximum energy lost by a muon is the same as in the pure ionization (knock-on) energy losses.

The minimum energy is taken as � � � � � � 4	� 7 . In the above formula � is the energy lost by the

muon, i.e., the sum of energies transferred to both electron and photon. On the output all of this

energy is assigned to the electron.

The contribution of the � -diagram (included with bremsstrahlung) is discussed in [44]:


 � � �� 4 � ��� 7 � � � � � � �
�
� � � + � � � � �

� � � � + � 
 � ��

 � �� � �

����
� �� 4 � 7 with ��

� �� 4 � 7 ����� � �

 �

� �

 � + � 
 � � � ��� � � � �

��
 � � � � �,+ � � �
� �

=1429 for � � �
and � �

=446 for Z=1.
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The maximum energy transferred to the photon is

� � � � � � 4 � �
�
7

� 4 � �

 � � 7 .

On the output all of the energy lost by a muon is assigned to the bremsstrahlung photon.

3.10.3 Photonuclear interactions

Th photonuclear cross section is used as parametrized in [48]:

� �
� � � �� � � � � � � � 	��0)���� 4
� 7 ��� ��� � � � � + -� � � � � + -

� + - �
� � �

� +� � �
� 	����
� ��� ��� � � � � ++� � � �

� +� � � � +� � � 	��0)���� 4
� 7 � + -
� + - �

� � 	����
� � ++� ���
� � � �

� ++
� �	� �

where
� ��
 +� � � � � +	� +� � � � � � � � �

� �
�
� + � � + - �

	���� �
GeV + � and � ++ �

��� �
GeV + .

Nucleon shadowing is taken care of by

� �
�
4 �
7 � � � � � 4 �

7
� 	��0)���� 4
� 7 � 	����
���
with

� 4
� 7 �
�

� �
�
� +� � � � � � � 4 � � � 7�� � for � �� �

, and
� 4
� 7 � �

for Z=1

� � ��� ��� � � 	��(	
	%� �
� �
�� � � � 4 �

7
.

Several parametrization schemes for the photon-nucleon cross section are implemented. The first is

� � � 4 �
7 � 
 $/�"� �

�
�

 �

� for � � � )
GeV

� � � 4 �
7 � �
� ��� � � ����$ � ) � � +�� 	��(	%��� � �

�
� b � for �

� � � ) � ��	
	 GeV
�

[48]

� � � 4 �
7 � � 
 ��� � �
���"� ��� � �

� � � ����� � 
 
 � � b � above 200 GeV [49].
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The second is based on the table parametrization of [50] below 17 GeV. Since the second formula

from above is valid for energies up to
�#	 �

GeV, it is taken to describe the whole energy range alone

as the third case. Formula [51]

� � � 4 �
7 � $��/��� � � � � � � � � �*� � � � � � � b with �8� � � �

can also be used in the whole energy range, representing the fourth case (see Figure 3.27). Finally,

the ALLM parametrization (discussed in Section 3.10.8) can be enabled. It does not rely on the

assumption that the virtual photon can be considered as real and involves integration over the square

of the photon 4-momentum ( 
 + ).
Integration limits used for the photonuclear cross section are (kinematic limits for 
 + are

used for the ALLM cross section)

� � � � +�� � �
�

� � � � � ��� � � � +�� +��
� +� ��+
� � �

� � 
�� �2� �

� 
 + � � � 4 �
� � � 7�� � +� � � � �3� �

� .

3.10.4 Electron pair production

Two out of four diagrams describing pair production are shown below. These describe the

dominant “electron” term. The other two have the muon interacting with the atom and represent the

“muon” term. The cross section formulae used here were first derived in [52, 53, 54].
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� ��4 � ���,� � 7
� � � � �

�
� � �54	� ��� 7 4 � � � 7 +

� � �
�

�
� � � � +

� + � �
�

��� 4���� ��� � 7�
 � � � � 4���� � � � 7�
 �

� � �
� � 4 � � � + 7 4 � � � 7 � � 4 � � � + 7 � ���

� � � �
� � �

� � � + � �

� � � � 4 � � � + 7 ��� �
� � �

� � 4 � � � + 7
� � � �

� � � � �
� 4 � � � � 7 4 � � � + 7 � ���.4 � � � 7 �

� � 4 � � � + � � 7
� � � � 4 � � � � 7 4 � � � + 7 � � �

� � � ���

�� � � �.- � �
	 4 � � � 7 4 � ��� � 7� � + �
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 - ���
� 
 - ��� �

�
��� 
 - � � �
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� ���
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�
� - � � � + 4 � � � 7 4 � ��� � 7 �
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�� +� �� � � �,+ � �� � + � � ��� � � ��� � 
 - ���
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 - �����

�
��� 
 - � � �

� ��
� � �

�
� � + � � � 4 � � � + 7� 4 � � � � 7 ��� 4 � � �

 � 7�� � + � � � 4 � � � + 7
� � �

� � � + � � � 4 � � � + 7
4 � � � + 7 4 � 
�� � � � 7 ��� 4 � � � 7 � � � �

+ � +
� � �/+� 4 � � � 7 � � � � � �� � � +

� � � +� � �

� ��� � ���� � � 4 � ��� 7 �
	��(	*)�� ���

� � � �
- � � �

� ��� � � � � � � 	����
$
	��(	%� � ��� � � � �

- � � � � ��� � � � � � � 	��"� �

 - �
��� 
 �5�#	 � � and  + �

�/� �5�#	 � � for � �� �

 - �
��� ���#	 � � and  + �

��� �5�#	 � � for �3� �
.

Integration limits for this cross section are

� �
� � � � � � � � � � � � � � � � � 
 �

�
�
� � - � �

	 � � � � � � � � � �
� � � � �

� �
� � � $

� +
� + 4 � � � 7 �
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Muon pair production is discussed in detail in [55] and is not considered by MMC. Its cross section

is estimated to be � � � �#	 
 times smaller than the direct electron pair production cross section

discussed above.

3.10.5 Muon decay

Muon decay probability is calculated according to

� �
��� �

�
 � � � .

The energy of the outgoing electron is evaluated as

� � �6 
�

� � � � � � ���
� +� � � � � � +� 

��� 4 � 7�� .

The value of 

���14 � 7 is distributed uniformly on 4 � � � � 7 and � � � � � is determined at random from the

distribution

� �
��� �

� + � �� 
 � � � 4
�
� � � 7 � + , ��� �

� � � � with � � � � � � � and � � � � � � + � � +��
�

.

3.10.6 Molière scattering

After passing through a distance x, the angular distribution is assumed Gaussian with a

width 
 � �1� [42]:

�1� �
� �/��$ � ���

� � 
 �
	 � 
 � � � � � 	��(	�� � ��� 4
� 
 � � 7 �

� � is evaluated as � � � � � � � � �	� 4 � � ��� 7
� � � � � �.- for � � ��� � �#	 + � eV.

Deviations in two directions perpendicular to the muon track are independent, but for each direction

the exit angle and lateral deviation are correlated:

� � � � ��� � � - � � �

 
 � � � � + � �1�


��
and � � � ��� � � � + � �
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x

y

θ

for independent standard Gaussian random variables ( � - , � + ). A more precise treatment should take

the finite size of the nucleus into account as described in [56]. See Figure 3.31 for an example of

Molière scattering of a high energy muon.

3.10.7 Landau-Pomeranchuk-Migdal and Ter-Mikaelian effects

These affect bremsstrahlung and pair production. See Figure 3.30 for the combined effect

in ice and Fréjus rock.

LPM suppression of the bremsstrahlung cross section:

The bremsstrahlung cross section is modified as follows [57, 58, 59]:

�

� 4 � � � 7 � � + � � 4�� 7�
�
� + � 4�� 7 � � � � �34 � � � 7 + � � 4�� 7 � .
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The regions of the following expressions for � 4�� 7 and
� 4�� 7 were chosen to represent the best con-

tinuous approximation to the actual functions:

� 4�� 7 � � � ���	� � � $ � � � � 4 � � � 7 � � � � �	���$
��� � 	��0) 
 $ � � 	���$
� � � +
�

for � � ����� � 
 � �

� 4�� 7 � � � 	��(	�� � 
 � 
 for � � ����� � 
 � �
� 4�� 7 � � � ���	� � � � � � � � +� � �/� 
 �
$ � � ��� 
 ) � + � 	��(	%� � � � ) ����	 � 


�
� 4�� 7 � � � 4�� 7 � � � 4�� 7 for � � 	��0)/�#	�� 
 	
� 4�� 7 � �
$ � + 
 4 �
$ � + � � 7

for
	��0)/�#	�� 
 	 � � � 	�� 
 	 � 
 � �� 4�� 7 � � � 	��(	%�
� 
 � 
 for � � 	�� 
 	 � 
 � � .

Here the SEB scheme [60] is employed for evaluation of � 4�� 7 , � 4�� 7 , and � 4�� 7 below:

� 4�� � 7 � �
for � � � � -

� 4�� � 7 � � � � �
	��(	�� 4 � ��� 7 � � � 4 � � � 7 + �

��� � -
for � - � � � � �

� 4�� � 7 � �
for � � � �

������� � � 4 � � + 7 + � �
� ��� � .

� � is the same as in Section 3.10.6. Here are the rest of the definitions:

�8� � �
 � � - � 
 � � - � � � �
�

� �
�

� � � � ����� �� � 4 � � � 7
� � ��� � �

��� � -
.

Dielectric (Longitudinal) suppression effect:

In addition to the above change of the bremsstrahlung cross section, s is replaced by
� � �

and functions ��4�� 7 , � 4�� 7 , and
� 4�� 7 are scaled as [59]

� 4�� 7 � ��4 � � 7 � 4�� 7 � � 4 � � 7�
 � � 4�� 7 � � 4 � � 7�
 � + .
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Therefore the first formula in the previous section is modified as

�

� 4 � � � 7 � � + � � 4 � � 7�
�
� +
� 4 � � 7� + � � � � � 4 � � � 7 + � � 4

� � 7� �
.

�
is defined as

� � � �  +
�
� � �
� �

� + �
where � � � 	 � � � � � + 
 � is the plasma frequency of the medium and �/� is the photon energy.

The dielectric suppression affects only processes with small photon transfer energy, therefore it is

not directly applicable to the direct pair production suppression.

LPM suppression of the direct pair production cross section:

� � from the pair production cross section is modified as follows [59, 61]:

� � �
� 4 � � � 7 4 � � � � � � + � � 7 � � 4 � � � � � � + � � 7 � 4 � � � + 7 � � � � �

���
�
�

�������
� �

�
� 4 � � � + 7 .

The � ����� energy definition is different than in the bremsstrahlung case:

������� � � 
� � � � + � � + � where � ����� 4 �/���
� � � �.- � � 7 .

Functions � 4��%� � 7 , ��4��*� � 7 , � 4��*� � 7 , and � 4��%� � 7 are based on the approximation formulae

�
4�� 7 �
$ �$ � � � and

� 4�� 7 � 4 $ � 7 +
4 $ � 7 + � �

and are given below:

� 4��%� � 7 �
�
� 4 � � ��� � 7 ���

�
$ � +%4 � � � 7 + � �
�
$ � + � +

� � � $�� � � � � �
$ � + � �
�
$ � + � � � � � � � 
 ��� � 4 $ � � � � ��� 7 � � � �

� 4��*� � 7 �'� 4 � � � � 7 � �
$ � 4 � � � 7 � �
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� 4��*� � 7 � � � + � ��� �
$ � + 4 � � � 7 + � �
�
$ � + � + � �3� � + 4 �
$ � + �9� 7

$ � �
�
�
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 ��� � 4 $ � � � � ��� 7 � � � �
� 4��%� � 7 �'� � � + � ���

$ �/4 � � � 7 � �
$ � �

� 4��%� � 7 � � $ � � � � 
 ��� � 4 $ � � � � ��� 7 � � � � .

3.10.8 The Abramowicz Levin Levy Maor (ALLM) parametrization of the photonu-

clear cross section

The ALLM formula is based on the parametrization [62, 63, 64]

� ��4 �,� 
 + 7
� � � 
 + �

� � � +
 
 �

+
�
� � � � � � � �� � �

� � � �
� +
 + � � + 4 � � � � + � + 
 
 + 7� 4 � � � 7 7 �

� � 

+� � � � .

The limits of integration over 
 + are given in the section for photonuclear cross section.

�

+ � � 4	� � 4 � � � 7 � 7 � �+ Here, � 4 � � � � 
 + 7 � � 4 � � � 7

� 4 � � � 7 � � � � � - for � � 	��(	
	�� �

� 4 � � � 7 � � � � � � ������� � � � � � � � � � for
	��(	
	�� � � � � 	��(	 �

� 4 � � � 7 � �
for � � 	��(	 �

� �
+ 4
� � 
 + 7 � 
 +
 + � � +� 4

� �
+ � ���

+
7

� �
+ 4
� � 
 + 7 � ��� � � �� 4 � � � 7 � � for ��� � ���

For � � � � � � � � �
� � � � ��4 � 7 � � - � � + � � �

For
� � � � � � � � 4 � 7 � �

- �'4 � -
� �

+
7 � �

� � � � � � � �
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� �����
���
� � � � ��� �
� �
� ��� �

� � � 
 + � � +�
 + � � +� ��� + � � + for � � � ��� �
where � is the invariant mass of the nucleus plus virtual photon [65]: � + � � + � � � � � � 
 + .
Figure 3.28 compares ALLM-parametrized cross section with formulae of Bezrukov and Bugaev

from Section 3.10.3.

The quantity � 4
� � 
 + 7 is not very well known, although it has been measured for high �

( � �
	��"�

) [66] and modeled for small � (
�#	 � � � � � 	��"�

,
	��(	��

GeV + � 
 + � ��	
GeV + ) [67].

It is of the order � 	��"�
�9	�� �
and even smaller for small 
 + (behaves as � 4 
 + 7 ). In Figure 3.29

three photonuclear energy loss curves for � =0, 0.3, and 0.5 are shown. The difference between the

curves never exceeds 7%. In the absence of a convenient parametrization for � at the moment, it is

set to zero in MMC.
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Figure 3.27: Photon-nucleon cross sections,
as described in the text (Bezrukov Bugaev
parametrization): 1 (solid), 2 (dashed), 3
(dotted), 4(dashed-dotted)

Figure 3.28: Photonuclear energy losses (di-
vided by energy), according to different for-
mulae. Designations are the same as in
Figure 3.27, higher solid line is for ALLM
parametrization
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Figure 3.30: LPM effect in ice (higher plots)
and Fréjus rock (lower plots, multiplied by�#	 � � )
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Chapter 4

Cosmic Ray Energy Spectrum

Measurement with AMANDA

- Please make yourselves uncomfortable -

4.1 Muon energy loss in the AMANDA-II detector

This section starts with the description of a simple model of the distribution of the number

of hit channels ( ����� ) observed in AMANDA-II.

For a muon track going through the detector, the number of OMs within the cylinder of

radius � centered on the track is counted (Figure 4.1). The resulting number of OMs less than

a distance � away from the track is averaged over several thousand “representative” muon tracks

going through a grid of points with
� �#	
	

m � � � � � �#	
	
m in the �5� 	

plane with zenith angles

�#	 � � � � )1	 �
and azimuth angles

	 � � � � �
$�	 �
. The resulting � 4 � 7 and

� � 
 � �
� � distributions

are shown in Figure 4.2. An “average” muon has most of the detector OMs within 200 m of its
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Figure 4.1: Counting OMs around the muon
track

Figure 4.2: OM counts for an “average”
muon track

track.

The probability to see a photon at a distance � from its origin (sufficiently large so that

the photon suffers at least a few scatterings) at time
�

is [68, 69]


 4 �1� � 7 � �
4 � � � � 7 � � + ���	�

� � � +
� � � � ��� �

� � � .

Here � � ��� � � � �� with
� � � �2�

�
� � � �� � � and � � � 

��� 4 � � � � � 7 �
�

where
� � is the absorption length and � � � � vac


 � is the speed of light in the ice. The probability to

see the photon pass through a sphere of radius ��� � located at distance � , integrated over time, is


 4 � 7 � � � +� � � ���� �
�

� � � � �
� ���� � � � , where

� ��� � � �
� � � � � � �� .

Introducing the OM sensitivity ��� -+ � efficiency1 , the probability to record the photon at distance �

is

� 4 � 7 � � �
� �
+� �� $ � � � � �

�
� �
� �� � � � � .

�

The value of
�� represents the ability of an OM to see photons arriving to only half of its surface.
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This is only valid for ��� � � � � (diffusive approximation). In the opposite case of very small � ,

scattering is negligible, and one obviously has

� 4 � 7 � � � � � +� �� �	� + � � ����
.

In the simplified model that follows, both functions are stitched together and
� � is assumed �

� ��� � � .

A more precise analytical treatment is possible assuming the hit probability is determined

by the following functional form of the photon arrival time distribution (pandel function: [70]):


 4 � � � � 7 � �
� 4 � 7

� � 
 � ���
�
� ���
	 � � � ���
� ��


� 4 � 
 � 7 �
� �
� � � ��
 � � �� � � �� ��� � 	� ��� � with

� 4 � 7 ��� � � ��� � �
� � � � � � �

� �
� � � ���

.

The best values of free parameters � ,
�

, and the absorption length
� � which fit AMANDA-II delay

probabilities are shown below:

� � �
�%)
ns

� � ���/� �
m

� � � 
 � m.

This formula gives the distribution of the residual time
�
� � � , which is the difference of the arrival

time of the scattered photon and the time for a photon not deflected during its propagation (a direct

photon). The distance � between muon track and location of the optical module can be replaced with

the effective distance � � � � which depends on the orientation of the OM to result in a better descrip-

tion of data. For a full AMANDA-II simulation a different approach based on tabulated probability

functions (PTD, [71]) is used. It was found to have insufficient accuracy due to the layered structure

of the optical properties of ice at AMANDA-II depths (Figure 4.3). A better description, which was

recently developed (PHOTONICS [21]), can correctly account for all features of ice measured at

the location of the detector. It was not used for the analysis in this work, however, since it requires

significantly larger computer resources to achieve the required statistics of the simulated data.
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Figure 4.3: Layered optical properties of ice at the location of the AMANDA-II detector

A muon passing through the detector deposits an amount of energy proportional to its

average energy while inside the detector. Most of this energy is eventually passed to photons which

are then detected with the probability functions given above. In the following it is assumed that the

number of photons produced by the muon and all secondary showers along its path is proportional

to its energy: � � ��� � � � 
 � � . This is valid for muons with sufficiently large energies as seen from

the following. The number of Cherenkov photons produced by a muon is [72]

� � �
� �
� � � � � � ����� +�� �

�
� + .

Here � is the fine structure constant. Although the number of Cherenkov photons generated by

a muon itself is mostly independent of its energy (proportional to its track length, though), the

secondary showers left by the muon increase its effective track length by an amount proportional to
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their energy

� � � � � �
GeV

���� ���
��� �%)/�

for electromagnetic shower

�/����	��
for hadronic shower .

The total energy of secondaries left by the muon inside the detector volume is proportional to the

muon energy (see Figures D.29 and D.30) when the muon energy is sufficiently high, therefore the

total number of the Cherenkov photons in this case is also proportional to the muon energy inside

the detector.

Summing up the photon hits inside the detector, the muon with energy � should produce

an event with on average � 4 � 7 hit OMs:

� 4 � 7 � ���
� �
� � � 4 � � � 4 � 7 7 � � � � � � � 4 � 7

��� ���

�
� �
� �
� � � � � � 
 �

�
� � � � � � � � 4 � 7

� � ��� .

The ��� � distribution is then given by

��� �'� �
� �
� �
� � 
 � � -

�
�*� �'� �

� � 4 � 7
� �

� � 
 � � -
�

� �
� � 
 � � � � 4 � 7 � � �

where
� �
�*� � ���

� �
� 4 � 7
� � � � � 
 �

�
� � � � � � � 4 � 7

��� � � .

In the above, the muon flux is assumed to have a power law spectrum with exponent
� 4  � � 7

. For

high enough energy, muons obey this energy spectrum at the surface, according to the formula [5]

� �
�*� � 	��"� �

cm �,+ sr �.- s �.- GeV �.- � A �
� � �

GeV
� ��� � � �

� � - � - � ��� �
	��- -���
����
�

	��(	%� �
� � - � - � ��� �
	��� � � 
���� � .

According to the muon energy loss approximation (see Section 3.7),

�*�
��� � � � � � � with � � 	����
� 
 GeV

mwe
,

� � 	�� �
�%) �#	 � �
mwe

� � � �3� � �
� � ��� � � � 4 � � � � ��� 7 �
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Figure 4.4: Model of ��� � distribution

i.e., � � � � � for high enough initial energy. As the energy of the muon drops below 1 TeV, the

muon energy spectrum is no longer a power law with
� 4  � � 7

exponent. However, for this work it

is only important that the energy spectrum of muons at the location of the detector is falling with a

slope which depends on  .

Since
� 4 � 7 comes in the combination

� 4 � 7�
 �8� , the only effect of the sensitivity � of the

OMs is on the overall normalization of the � ��� distribution. By changing � � to compensate for

changes in � we simply change the region of energies which the detector can see. The resulting � ���

distribution for �8� 	��"� )
,
� � � �2� �#	
	

m,
� � � � � � �
�

m,  � �/�0)�$
, and � � � ��	
	

MeV is shown in

Figure 4.4.

Since
� ��� � � is known with limited precision, it would be interesting to find a quantity

which depends strongly on the spectral index  and normalization �8� , but less so on
� ��� � � . The

next section discusses some features of the � ��� distribution which appear to have this quality.
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4.2 A model of ����� distribution

From Section 4.1,

� 4 � � 7 � � �
� �
� � � � � � 
 �

�
� � ��� 
 � � � 
�
 
 � � � � � � � 4 � 7

� � ��� .

For small ����� , e.g., small
� � ��4 � ��� � � 4 � � 7 7 ,
� 4 � � 7 � ���

� �
� 4 � 7 � � � � 4 � ��� � � 4 � � 7 7 � � 4 � 7

� � ��� .

Assume that the OM depth density �

� � �
� �

� � � � � �
� �

� 4 � 7 � � 4 � 7
��� � �

is constant with depth
�

. Introducing the depth
�

dependence of the muon energy � � , for a cylin-

drical detector located between depths
�

- and
�

+ and a muon track going vertically down,

� � � � �
� �

� � � � � 4 � � � � 7 � � � .

Here
� � � 4 � 7 is assumed proportional to � , and the coefficient of proportionality is included in � .

Let � � be the muon energy at the surface. Then, solving the muon energy loss approxi-

mation equation �*� 
 � � � � � � � between � � �3� 4 	*7 and � � �3� 4 � 7 ,
�*�
��� 4 � 7 � � � � � � � 4 � � � � � 7 �
� � � �

.

Therefore,

� � 4 � � � � � 7 � � �
� �

� � � � � � � .

Depending on whether the muon stops inside the detector (at
�

, determined by �
� � � � � � � � 
 � ) or

goes through (see Figure 4.5), one gets two solutions:
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Figure 4.5: Simple model diagram: muon
propagating straight down

Figure 4.6: Observed break in the � ���
distribution

� � 4 � � � � � 7 � � � �

������ �����
��� � � � � �
� � � � � 4 � 7

� � � � � � -- ��� � �� � 4 �%7

� �

������ �����
4 � � � � � 7 � � � 4�� � � � � � � � � � � 7 � 4 � � � � � 7 � �

4 � � � � � 7 � � � � � � � � � � �� � 4 � � � � � 7 � � � � .

Therefore, for a muon spectrum of �9�'� � � � ��� at the surface,

� �'� � �

������ �����
� � � �

�
�

� � ���� � ��� � � �� � � ��� � � �*4 ����� � 7 � �

������ �����
��� �� � �

�
��� �� ��� � � � .

A change in slope occurs at � ��� � � corresponding to � � � � � 4�� � � �6� 7 � � 
 �
(Figure 4.6),

which depends only on the geometrical configuration of the detector. Therefore, the number of

events with ����� above ��� � � � can be used to get the total flux above � � � � , i.e., to find the normaliza-
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Figure 4.7: Muon energy loss inside the de-
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Figure 4.8: Muon energy loss for muons with
� � �3� � � � , which pass through depth �

tion constant � � .
At this ��� � the slope � ��4 � ��� � 7 � (to the right or left) is proportional to  . It can also be

seen that it does not depend on the OM sensitivities or ice properties, since � cancels out.

To evaluate the energy loss per event in the detector, a Monte Carlo chain consisting of

only CORSIKA and MMC was run. The detector was assumed to have a radius of 125 meters and a

length of 400 meters. A “-user” option was used to record muon energy when entering and leaving

(if leaving) the active volume of the detector, which allowed the calculation of the total energy

deposited by all muons in the event inside the active volume of the detector. From the discussion

above, this energy is proportional to � ��� .

For each layer2 inside the detector ( � -coordinates
� ��	
	

through 200), the energy lost by

muons is histogrammed if at least one muon from the bundle reaches that layer. The distributions

are found to follow the broken spectrum described above, and the maxima (corresponding to the
�
Here: 40 equally spaced horizontal planes.
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Figure 4.9: Results of the fits to the normal-
ization depth profiles

Figure 4.10: Results of the fits to the slope
depth profiles

break point) are denoted by green lines (Figure 4.7). The energy for muons reaching a given � -

coordinate corresponding to the breaking point � ��� � � � � in the distribution of ��� � � � � � � � depends

weakly on the depth and is roughly 85-90 GeV (Figure 4.8). The model predicts depth profiles of

the normalization and slope change as shown in Figures 4.9 and 4.10. The energy of a typical muon

losing energy � ��� � � � � inside the active volume of the detector is about 1 TeV (Figure 4.11), and the

energy of a typical primary creating such a muon is about 14 TeV (Figure 4.12).

Figure 4.13 shows muon energy lost inside the detector cylinder. The features of the full

Monte Carlo simulation can be explained by muons going through different parts of the detector at

different angles.

Consider muons going straight down through the center of the detector (blue histogram

in Figure 4.13). When their energy is less than � 100 GeV, muons stop inside the detector and the

energy loss is equal to the energy of the muons at the top of the detector (as seen from Figure 4.14).

As the muon energies increase, they start going through the detector and lose only a part of their
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energy. Up to some � 500 GeV, muon energy losses are mostly continuous (ionization losses) and

are therefore independent of the energy of the muon at the top of the detector. For the same reason

the muon energy losses at these energies are very deterministic (almost no stochastic part) so that

the energy lost inside the detector is well defined, which explains why the peak is so sharp. This

peak is the focus of the first method described below. As the muon energy increases beyond � 1

TeV, its energy losses become proportional to its energy, and the slope of the distribution increases,

creating the upturn which is used by the second method.

Once muons coming from all directions and at different distances away from the detector

center are included in the simulation, the peak becomes quite a bit broader. The double-peak struc-

ture visible in the black histogram in Figure 4.13 is an artifact of the cylindrical geometry used for

this model. The real detector consists of OMs and some volume around them which is only roughly

cylindrical. This substantially smoothens the observed � ��� distribution.

The described mechanism for the upturn feature is not the only reason for the upturn
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Figure 4.14: Muon energy lost inside the de-
tector cylinder vs. muon energy at the center
and top of the detector

observed in the ����� distribution in data (also in the simple model described in Section 4.1, Figure

4.4). Other reasons include the change in the OM counts for the typical muon track (Figure 4.2)

and the change in the behavior of the photon propagation probability (Figure 4.1). For a range of

parameters compatible with AMANDA-II settings and measured ice properties it is nevertheless

possible to use the upturn for an estimate of the spectral index  in a way which depends only

weakly on these parameters. Figure 4.15 shows simulated � ��� distributions (for the model described

in Section 4.1) for six values of  from 2.0 to 3.0. For each value of  , 14 plots for
� ��� � � varying

from 24 to 50 m are shown in different colors. All curves were fitted between the yellow lines with

���	� 4 
 - � 
 + � � � � 7 � ���	� 4 
���� 
�
 � � � � 7 . A quantity ����� 4 ��� � 4 
�� 7�
 ��� � 4 
 - 7 7 � 
�� � 
 - describing

the slope change rate at the upturn point was found to depend weakly on
� ��� � � while changing

significantly with  (Figure 4.16).

In the model of ����� distribution discussed in Section 4.1 (and Figure 4.4) several sim-
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plifications were made. First, the number of OMs � 4 � 7 within a distance � of the muon track

was assumed the same for all OMs. Scattering and absorption lengths and OM sensitivities were as-

sumed to be constant throughout the detector. A muon is assumed to go through the detector without

changing its energy. Only the average � ��� was evaluated for each muon energy. All these simpli-

fications can be removed by doing the detailed detector simulation (Monte Carlo using AMASIM

[17]), which is what is done in the following discussion. Different ice property and OM sensitivity

parameter sets which vary these parameters around their measured values were used (see Appendix

E.1).

4.3 Noise cleaning and OM efficiency

Signals from all optical modules are corrected by subtracting noise from signal and adding

muons passing through the depth of each OM which are not recorded by it, i.e., “muon signal” �
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signal
�

noise � missed signal.

With the current data-taking setup in AMANDA-II it is possible to evaluate the noise

distribution in the detector independently from the signal. One simply needs to select hits during

some time window before the trigger fires (and the majority of muon-related hits come in). In Figure

4.17 two windows are selected: one for noise and another for “total signal” � signal � noise.

The width of the window is chosen so as to contain most of the signal. Each OM is

counted if it has been hit at least once. Therefore for the following analysis afterpulses coming from

the signal are counted as signal, and those coming from noise are counted as noise. Consequently,

the window can be selected to be very large (up to 16 � s). However, with the larger window

noise hits will occur in almost every event, so the noise subtraction algorithm will not work (or

lose precision and require substantially larger statistics). On the plot in Figure 4.17 two hit time

distributions are shown: one for uncalibrated data (containing times of signal arrival at the surface)
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and another for time-calibrated data (which contains signal times at the location of OMs). It appears

that the muon hits form a peak, which is more compact when the data are calibrated. The acceptable

choice of the signal and noise windows was found to be 8000 ns when used with a calibrated file.

In the following, events are counted as 1 if there was at least one hit in the corresponding

window. For each OM, the probability to have noise during the noise window in � � ��� events is

evaluated as
� � � ��� � � 
 �� � � � . The probability to have any signal (muon signal or noise) during the

signal window is
� � � � � � ��� 
 � � �� � � � . The probability to have at least one muon signal during the signal

window is then
�
� � ��� � � � 
 � � �� � � � . Since these events are uncorrelated, the probability to have neither

noise nor muon signal during the signal window is equal to
� � � � � 4 � � �

�
7 � 4 � � � � 7 , i.e.,

�
� � � � - � � �- � � � , and � � 	
� � � ��� �%� �

� � � � ��� .

Let us designate the “efficiency” of an OM as the ratio of the number of muon signals the

OM recorded to the total number of muons which crossed the depth at which this OM is located

and caused the detector to trigger. If the efficiency of the OM at �5� � were known, the signal from

this OM could be used to compute the number of muons which passed the depth � � � and were

recorded by the detector. To determine the efficiency of OM “ � ,” the simple construction shown in

Figure 4.18 is used. If the muon was seen in a layer above OM “ � ” (shown as “1”) and in a layer

below (shown as “2”), then it must have passed through the depth of the OM “ � .” Let us denote by

1 and 2 the number of events in which there was muon signal in the layer above (1) and below (2)

OM “ � ”, respectively. Correspondingly, � denotes the number of events in which OM “ � ” had

muon signal. Then the efficiency of OM “ � ” is determined as

� � 4 � � �%7� � �
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Figure 4.19: efficiency-governed signal Figure 4.20: ”mean field” calculation

and the number of muons which passed through the depth of OM “ � ” can be estimated as

� �
� � �

� � 4 � � �%7

and is shown in Figure 4.19 as a function of OM number and depth.

To estimate the quantities
� � �

and � � 4 � � �%7 , the following relations were used:

��� � � � � �
�9� � � � � � � � � � �
� �����

� � 4 � � �%7 � � � � � � � ��� �
�9��� � � ��� � � ��� ��� � .

Since the noise subtraction algorithm works not only for single OMs, but also for unions

of OMs, the quantities
�
,
�
, � ,

��� �
,
��� � ,

��� � , and
��� ��� � are estimated for signal and

noise time windows, and then subtracted from each other using the noise subtraction formula to get

these quantities for the “pure” muon signal.

In Figure 4.19 the numbers of muons show slight variations from one OM to the next
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(most of the variation is between different strings). This is due to the fact that the efficiency, esti-

mated with the above method, is only valid for muons with energy high enough to be seen in both

layers 1 and 2. In order to get the total muon counts one has to interpolate this value for the lower

energy muons, which are seen in the layer 1, but not 2.

It is possible to avoid this interpolation. Denote by
� 4�� 7 the total number of muons which

pass through the layer containing the set � of OMs. Then obviously,

� 4�� � 4 � � �%7 7 � � 4 � � �%7 �
� 4 � 7 � � 4 �%7 � � 4 � � �%7 � � 4 � 7 � � 4 �%7 � � 4�� 7 � � 4 ��� �%7

� � 4 ��� � 7 � � 4 ��� � 7 � � 4 ��� ��� � 7 �
� 4�� 7 � � 4 � � � 7 � � 4 ��� � 7 � � 4 ����� � � 7 .

Sets
��� � ,

��� � , and
� � � � � can be chosen very large so that

� 4 ��� � 7 � ��� �
� 4 ��� � 7 � ��� �

� 4 ��� ��� � 7 � ��� ��� � .

If the sets 1 and 2 are chosen such as to extend to the very top and bottom of the detector,

then the last relation is exact: all muons which trigger the detector will show up in at least one of 1,

2, or � . The quantity
� 4�� 7 is then the number of muons which pass through the depth of OM “ � ”

and trigger the detector. The sensitivity of OM “ � ” can now be evaluated as � 
 � 4�� 7 , but it is of
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Figure 4.21:

Comparison of Monte Carlo samples with and without noise

secondary interest. Figure 4.20 shows the number of muons passing though the depths of detector

OMs vs. OM number and vs. depth, evaluated using the second method.

For simulated data it is possible to eliminate noise by removing those hits. Curves pro-

duced by applying the algorithm to the simulated data with and without noise follow each other

closely (Figure 4.21), so the noise subtraction method works well, as expected.

To estimate the range of depths for which the algorithm works, it has been applied to the

same simulated data samples with height of sets 1 and 2 fixed at
�#	
	5� ��	
	

meters. As mentioned

above, the thicker the layers 1 and 2, the more precise is the method. As seen from Figure 4.22, all

curves for set sizes of
��	
	 � ��	
	

meters follow each other closely, i.e., acceptable choices of set

1 and 2 heights are above 300 meters, with the 200 meter choice being quite good, too. Therefore

the algorithm can be applied at depths 300 meters away from the detector top and bottom, i.e., the

layers at � -coordinates of
& �#	
	 � ��	
	

meters.
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Results for different layer sizes

The algorithm was applied to different subsets of data, requiring the number of channels

hit to be at least 20 to 120 (see Figure 4.23). Then for each layer (at � in the range of
& �#	
	2� ��	
	

meters), the corresponding � ��� distributions were calculated. Figure 4.24 shows muon-signal depth

profiles for ����� equal to
�%)2� �%	

. The lower plot is only made for muons coming down at zenith

angles of less than
��	 �

from the � -axis. Since about half of the observed muons come from this

direction (see Figure 2.4) the two plots are very similar, although the curve corresponding to � ��� �
�%	

in the lower plot does look flatter in the applicable region ( � � � � �#	
	
m). This is expected since

all muons which enter the detector at the top with sufficiently high � � � will exit at the bottom (i.e.,

there are no muons going at shallow angles through just the middle of the detector). At lower � ���

(27 or above) the number of observed muons rises with � , which is consistent with muons stopping

inside the detector before reaching the bottom.
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4.4 Fits to � ��� distribution

To study the features of the � � � distributions they were fitted with the following functions.

In the first method it is important to know the location of the maximum and slope of the � ��� 4 � ��� 7

distribution, so it was fitted with

��4
� 7 � 4�� � � � � � � � 7 �
� �

erf 4 � � � �
� �

7
� � where � ��� ��� - � 4 �����

7

(see Figure 4.25). For the second method it is important to find the location of the upturn feature

(here located at � ��� � � �	� ; � � stands for the point of maximum slope change) and evaluate

quantities � ��� 
 �*4 � � � 7 � � -� 
 � � � � � � � 
 � � �
�

� � � � and normalization � � � � � �8� � � � ���� � 
 ��4
� 7 ��� at ����� �
� � � . The ����� distribution for data can be fitted with either � � � � � � � � � � � � � � � � �

(Figure 4.27) or

��4
� 7 � 4�� � � � � � � � � � � � � � � � � 7 �
� �

erf 4 � � � �
���

7
�

(Figure 4.28). The second fit describes the behavior of � ��� distribution at low ����� better and makes

the fit independent of the small variations in the location of the fit region boundaries. As seen from
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Figure 4.25: Fit to the ����� distribution for
small ����� . Green smooth lines are fits to the
jagged black histograms.

Figure 4.26: Fit to the ����� distribution for
OM 1. Green smooth lines are fits to the
jagged black histograms.

Figure 4.29 both fits give equivalent results, since the behavior of the fits at and after the � ��� � � �	�

point is identical. The green dashed lines in the first 4 plots are the 4-parameter fits, and the blue

solid lines are 6-parameter fits. In the last two plots both lines are for a 6-parameter fit, but the lines

are computed using different numerical procedures. The fits can be done for the � ��� distribution

associated with a layer of a particular optical module, e.g., OM 1, as seen in Figure 4.26.

4.5 Noise subtraction

The signal window contains on average four noise hits. The exponential fits can be easily

adjusted to account for this. Consider an exponential distribution
� 4 � 7 � � � � � � � with parameters

� and
�
, which are slowly varying functions of � , to which Poisson noise

� �
��� � � � (with

�
� �

) is
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Figure 4.27: 4-parameter fit to � ��� distribu-
tion. Green smooth lines are fits to the jagged
black histograms.

Figure 4.28: 6-parameter fit to � ��� distribu-
tion. Green smooth lines are fits to the jagged
black histograms.

added. Then the total distribution is

� � � � 4 � 7 � ��

�� � �

� � � � 
 � � 

�
� 

��� � � �

��� � � � � � ��

�� �

4 � � ��� � 7 

��� � � � � � � � �
� �

� � � � � � �

��� � � � � � � � � � � � � � ��

�� �

� � 

��� � � ��� �

where
� � � � �
� � �

and � is sufficiently high ( � � �%	
). So,

� � � � 4 � 7 ��� �
� � � � �

with �
� � � � � 4�� � � � � 7 �

i.e., for the exponential fit the noise correction includes adding
� 4 � � � � � 7 � � � �

(since
�
� 	��"� �

�
) to the fitted value of � . For slowly varying � and

�
this correction varies from one point to another.

However,

� � � � 4 � 7 ��� �
� � � � � ��� � � � � � � � � ��� � � � � 
 � � �

�
� � 4 � � � 7 .

Therefore, it is sufficient to shift the fit by
�

to accommodate the noise correction.
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4.6 Fits at smaller � ��� , the first method

- If it’s not one problem, it’s two -

The value of 
 - determines the ����� normalization ( ��� � � ���	� 4 
 - 7 ), and 
 + correlates

with spectral index (since it determines the slope of the � ��� distribution). Figures 4.30-4.33 show

depth profiles of the fit parameters 
 - through 
 
 . The simulated data are shown in different colors

for different spectral indices (
�/���
$2� �/� 
 $ ), and the data are shown in black. The Monte Carlo data

simulated with different ice parameters should lie close together for each spectral index to reduce

the systematic errors caused by ice parameter uncertainties. Figures 4.30 and 4.31 do show some

resolving power of the method, but it seems to be rather poor.

Compare Figures 4.30-4.31 with the prediction of the simple model of Section 4.2, Figures

4.9 and 4.10. Note that Figure 4.31 shows a change in slope, the slope after the maximum being

taken with the minus sign, which is why the behavior of Figure 4.31 is inverted relative to that of

Figure 4.10.

The maximum is broader for the data simulated with the full detector Monte Carlo than

that just estimated from the muon energy loss plots of Section 4.2. The main reason for this is the

stochastic nature of the OM signal: even if the muon energy lost in the vicinity of a certain OM

were precisely known, the signal in that OM would follow a distribution which can be rather broad.

Also, the OMs are not spread uniformly over the cylinder around the detector, but are located at a

fixed set of points and can only see the signal from the photons emitted in some vicinity of those

points. The ��� � distribution appears to have a fixed slope only to the left of the maximum, therefore

the function fit to it was designed to only fit the location of the maximum and slope to the right of

the maximum.
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Nevertheless it appears that 
 � is correlated with both 
 - and 
 + and this can be used to

bring the curves in the 
 - and 
 + plots closer together for each spectral index correction. Figures 4.34

and 4.36 show the correlation of 
 - and 
 + with 
�� . Each plot shows seven sets of simulated data for

five spectral indices. The data sets are shown in blue. Each set consists of points representing fits to

����� at layers with
� �#	

m �
�

� �#	
m. The data are shown for the default detector configuration

and several modified configurations (as described in Appendix E.2).

Two families of empirical parabolas were fitted to the 
 - vs. 
 � and 
 + vs. 
 � plots

(Figures 4.34 and 4.36). Each simulated or real data point has a parabola associated with it (which

goes through it). Minimum values of such parabolas define functions ��4 
 -
7

and ��4 
 +
7
. As seen

on Figures 4.35 and 4.37, the separation between simulated data curves corresponding to different

values of spectral index is much better, i.e., the resolving power of the method is much improved.

Simulated data points at every � -layer in Figures 4.35 and 4.37 correspond to one of the

spectral index corrections:  � �/�0)�$ � 4  -correction
7 � �/�0)�$ � 	��"� � 4 	 � & � � & �%7 . These point groups

are plotted vs. their respective spectral index correction (in units of 0.1), and linear functions are

fitted through them (Figures 4.38 and 4.40). These functions are used to convert values at each

� -layer to the “spectral index correction” units (again, multiplied by 10 for convenience). The

resulting flattened plots are shown on Figures 4.39 and 4.41.
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Figure 4.39: Spectral index correction: con-
verted plots
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4.7 Fits at higher ��� � , the second method

Figures 4.42-4.45 show the result of using the second method. One can clearly see that all

ice models form groups well separated for different spectral index corrections. No extra parameter

correlation correction was done (although these plots have also been converted to the “spectral index

correction” coordinates). The data are shown in black and fall between the simulated data curves for

 � �/���
$
and  � �/��$
$

. Also, plots with simulated data without noise hits are shown to demonstrate

the power of the noise subtraction algorithm.

4.8 Results

The next subsections summarize the results of the application of the algorithms described

in this section to year 2000 data collected by AMANDA-II. Five samples of data (each one 10 files

long, or about 2 hours in detector time) from different seasons were analyzed: days 55, 91, 183,

275, and 298. Results were compared to Monte Carlo samples simulated for the same days (with

atmosphere profiles taken from [28], as described in Section 2.2). The average of the resulting

cosmic ray spectral index and normalization is calculated for final results, and the variance is taken

as the uncertainty in our description or the atmospheric profile (“atm” below).

Each of the following four subsections contains four plots. The first one shows the result

of analysis applied to the Monte Carlo samples (five of which were used for the fits employed by

the algorithms; the two that were not used are mamint and kgm). The resolving power of the method

is shown by the stability of the corrections found for each of the simulated data samples (they

correspond to
	 � & � � & � in the units of spectral index correction times 10 and should lie close to

these values). The variance of all seven models around their default value is taken as the systematic
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error caused by uncertainty in our knowledge of the ice parameters (“ice” below).

The second plot shows corrections found for different high-energy interaction models

(these were calculated with only mamint and kgm ice models). The third plot shows corrections

for different seasons, which were compared with data from different seasons to obtain the “atm”

uncertainty as described above. Finally, the fourth plot shows the stability of the results with respect

to the detector configuration changes (see Appendix E.2). The variance of points in this plot is taken

as the detector configuration error (conf below).

When converting the points on the plots to the results listed in the following subsections

please note that most of the Monte Carlo data points ware simulated for an October 1 atmosphere,

while all of the data shown on the plots are for day 55 (March 27). As seen from the third plot in

each set, an additional “seasonal” correction of
	��(	 � � 	��(	%�

needs to be applied to the results in the

spectral index correction coordinates in order to match the March atmosphere of the data with the

October atmosphere of the simulated data.
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4.8.1 Results: 1st method, spectral index correction

Results are shown in Figures 4.46-4.49. For QGSJET, day 55,

 � �/�0)�$
(H)

� 	��(	%$���& 	��(	
	*) 4 ice
7.&9	��(	�� � 4 atm

7 & 	��(	
	 
�4 conf
7 � �/�0)1	�&9	��(	%�

.

4.8.2 Results: 1st method, normalization correction

Results are shown in Figures 4.50-4.53. For QGSJET,

� � � 	��"�#	%�%) 4 H 7 � �#	 ����� � � 
 � � � - � � � 
 conversion slope

�
� 
 � � � � � -�� � � � � � 
 ice

�
� � � � + � 
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�
� � � � + � 
 conf

� �
�

� � � 	��"�#	%�%)
(H)

� 	��(	
	
	�& 	��(	
	%� 4 ice
7 & 	��(	
	 � 4 atm

7 &9	��(	
	%$ 4 conf
7 � 	��"�#	%$8& 	��(	
	*)

.

4.8.3 Results: 2nd method, spectral index correction

Results are shown in Figures 4.54-4.57. For QGSJET,

 � �/�0)�$
(H)

� 	��"� $
��& 	��(	�� ) 4 ice
7.&9	��(	�� $ 4 atm

7 & 	��(	
	%$ 4 conf
7 � �/��$�	�&9	��(	%�

.

4.8.4 Results: 2nd method, normalization correction

Results are shown in Figures 4.58-4.61. For QGSJET,

� � � 	��"�#	%�%) 4 H 7 � �#	 � � � - � 
 conversion slope

�
� 
 � � 
 � � � � - � 
 ice

�
� � � - � 
 atm

�
� � � - � 
 conf

� �
�

� � � 	��"�#	%�%)
(H)

� 	��(	���� & 	��(	
	%$ 4 ice
7 & 	��(	
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7 &9	��(	
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7 � 	��(	�� �8& 	��(	��#	
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Figure 4.46: different ice models Figure 4.47: different interaction models
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Figure 4.50: different ice models Figure 4.51: different interaction models
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Figure 4.54: different ice models Figure 4.55: different interaction models
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Figure 4.58: different ice models Figure 4.59: different interaction models
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configurations
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Chapter 5

Results

- From inception to deception in less than 100 pages -

5.1 Results of cosmic ray flux measurement

As seen from Section 4.8, the dependence of the developed method on ice parameters

or detector configuration is very weak. Cosmic ray flux corrections for both spectral index and

normalization are obtained. For QGSGET,

 � �/�0)�$
(H)

� 	��(	%$�� &9	��(	
	*) 4 ice
7 & 	��(	�� � 4 atm

7.& 	��(	
	 
�4 conf
7 � �/�0)1	�& 	��(	%� �

� � � 	��"�#	%�%)
(H) � 	��(	
	
	�& 	��(	
	%� 4 ice

7 & 	��(	
	 � 4 atm
7 &9	��(	
	%$ 4 conf

7 � 	��"�#	%$8& 	��(	
	*)
.

Please note that the corrections above should be applied to all components of the cosmic rays, from

H to Fe, as used in the simulation (starting with the values in A.1); here only the values for the H

component are shown.

Figure 5.3 shows integrated cosmic ray spectrum functions calculated using the values of

 and � � presented in Figures 5.1 and 5.2. As seen from Figure 5.4, the minimum variance between
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Figure 5.1: Results of the 1st method
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Figure 5.2: Results of the 2nd method

Shown are results for high-energy models (left to right): DPMJET, HDPM, NEXUS, QGSJET,

SIBYLL, VENUS, and also values from references [1] (Wiebel-Sooth) and [13] (Jörg Hörandel)
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high-energy interaction models is achieved at � 100 TeV, which is one order of magnitude above

the energy of maximum AMANDA-II sensitivity to primaries (see Section 5.3, still quite sensitive,

though, as seen from Figure 5.15). Also, the average spectra obtained with method 1 and 2 are

shown.

5.2 Muon flux calculation

To calculate the muon flux at the ice surface the spectral index and normalization summa-

rized in the previous section were fed to a CORSIKA simulation and the results were fitted with the

Gaisser formula [5]

� �
�*� � 	��"� �

cm �,+ sr �.- s �.- GeV �.- � A �
� � �

GeV
� ��� � � �

� � - � - � � � �
	��- -�� 
����
�

	��(	%� �
� � - � - � � � �
	 �� � � 
���� �

in the range of zenith angles
	 � � � � )1	 �

(to avoid � transformation at large zenith angles, [73]).

The fits work very well, and the majority of results show � +� � �
. Results are summarized in Table

5.1. Figures 5.5-5.7 show some of the fits used for the results in this table. Figure 5.8 also shows a

fit to the muon spectrum with only the maximum energy muon taken from each event (not shown in

Table 5.1).

Table 5.1: Muon energy spectrum results�#	 � � �#	 � TeV energy range
int. model A  � +�
qgsjet 0.613 2.662 1.08
sibyll 0.237 2.530 1.21
hdpm 0.397 2.602 1.05
venus 0.640 2.671 1.09
dpmjet 0.373 2.598 1.00
nexus 0.602 2.660 1.05

$�	
	 � $ � �#	 
 TeV energy range
int. model A  � +�
qgsjet 0.612 2.662 1.24
sibyll 0.230 2.525 2.42
hdpm 0.416 2.608 1.08
venus 0.635 2.670 1.15
dpmjet 0.365 2.595 1.03
nexus 0.595 2.659 1.08



110

cos(θ)
E [GeV]

103

104

105
0.2

0.4
0.6

0.8
1

A
γ
χ2

= 0.613
= 2.662
=  1.08

Φ0 = 0.14 cm-2s-1sr-1 ⋅ A
qgsjet

0.2
0.4

0.6
0.8

1

10

10 2

10 3

10 4

10 5

en
tr

ie
s

cos(θ)
E [GeV]

103

104

0
0.2

0.4
0.6

0.8
1

A
γ
χ2

= 0.612
= 2.662
=  1.24

Φ0 = 0.14 cm-2s-1sr-1 ⋅ A
qgsjet

0.2
0.4

0.6
0.8

1

10

10 2

10 3

10 4

10 5

en
tr

ie
s

Fits to muon spectra at the surface
Figure 5.5: QGSJET model,

� � �#	
	
TeV Figure 5.6: QGSJET model,

	���$
� $�	
TeV

cos(θ)
E [GeV]

103

104

105
0.2

0.4
0.6

0.8
1

A
γ
χ2

= 0.237
= 2.530
=  1.21

Φ0 = 0.14 cm-2s-1sr-1 ⋅ A
sibyll

0.2
0.4

0.6
0.8

1

10

10 2

10 3

10 4

10 5

en
tr

ie
s

cos(θ)
E [GeV]

103

104

105
0.2

0.4
0.6

0.8
1

A
γ
χ2

= 0.071
= 2.410
= 14.36

Φ0 = 0.14 cm-2s-1sr-1 ⋅ A
sibyll

0.2
0.4

0.6
0.8

1

10

10 2

10 3

10 4

10 5

en
tr

ie
s

Fits to muon spectra at the surface
Figure 5.7: SIBYLL model,

��� �#	
	
TeV, all

bundle muons
Figure 5.8: SIBYLL model,

��� �#	
	
TeV,

only maximum energy muons



111

Figure 5.9 shows a comparison of the muon fluxsum � � � ��� with the parameters � and  
from Table 5.1. Also the variance between the high-energy interaction models is shown. It appears

to have a minimum of 2% at � 1 TeV, which is the energy of the maximum sensitivity of the

AMANDA-II detector to muons (see Section 5.3). Therefore it makes sense to compare results for

the muon (e.g., vertical) flux at 1 TeV. Figure 5.10 shows the spectral indices and muon vertical

fluxes found at 1 TeV for all six high-energy interaction models. Assuming a systematic error of

2% between high-energy interaction models, it is possible to present a muon flux result which is

independent of the high-energy interaction model:

muon vertical flux at 1 TeV � 4 ���(	%� & 	��(	%� (ice)
& 	��(	 �

(atm)
& 	��(	%$

(conf)
& 	��(	%�

(HE int. model)
7 �

4 ���(	%��& 	��(	*)
7 � �#	 �.- � cm �,+ sr �.- s �.- GeV �.- (at the South Pole).

A similar result is obtained for the 2nd method (see Figures 5.11 and 5.12):

muon vertical flux at 1 TeV � 4 �������/& 	��(	 
 (ice)
& 	��(	*)

(atm)
& 	��(	 
 (conf)

& 	��(	��
(HE int. model)

7 �

4 ������� & 	��"� �%7 � �#	 �.- � cm �,+ sr �.- s �.- GeV �.- (at the South Pole).
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5.3 Range of energies of applicability of results

Figure 5.13 shows the distribution of energies of primaries and muons observed by AMANDA-

II. The majority of signal comes from muons with energies � 1 TeV produced in the showers gen-

erated by primaries with energies � 10 TeV. Figures 5.14 and 5.15 show these distributions vs. the

number of hit channels � ��� in the AMANDA-II events. These distributions don’t have a strong

dependence on the number of observed hit channels, i.e., both methods (1 and 2), which depend on

different ����� ranges ( � �
�2� �*�
and � �
�2� $
�

), also have maximum resolution at energies of �

10 TeV for the primary and 1 TeV for the main muon1.

5.4 Discussion

All high-energy interaction models have been tested to give similar results at the ice sur-

face. To explain the observed difference between them in the simulated data of AMANDA-II, and

also the difference in results obtained by methods 1 and 2, it is useful to define the observed muon

multiplicity, which is the number of muons per event which have produced at least one hit in the

AMANDA-II OMs during the applicable trigger window. Figures 5.16 and 5.17 show the distri-

bution of muon energies vs. observed muon multiplicities. A sizable fraction ( � 50%) of events

contain signal from Cherenkov photons produced by multiple muons. The energy distribution of the

main muons in multi-muon events is similar to that in single muon events. Therefore multi-muon

events produce a signal which consists of a part similar to the signal of a single muon event, plus

more hits from extra muons, e.g., multi-muon events should produce brighter events and somewhat

flatten the ����� distribution. As seen from Figure 5.20, multi-muon events do produce a flatter � ���
�

The highest energy muon in the bundle.
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distribution. Although the location of the maximum appears not to change significantly between

����� distributions corresponding to different observed muon multiplicities, the slope after the maxi-

mum (important for the first method) and the location of the upturn feature and rate of slope change

(important for the second method) do vary quite a bit. As seen from Figures 5.18 and 5.19 the frac-

tion of events with observed number of muons more than one is quite different between the models.

In fact, the models are grouped in the same way as in their corresponding spectral index which fits

the AMANDA-II data: QGSJET, NEXUS, and VENUS have almost idential fractions, DPMJET

and HDPM have lower fractions, and SIBYLL has the lowest fraction of multi-muon events.

5.5 Comparison with other experiments

The results of this work are consistent with those from other experiments and with theo-

retical predictions (see Figures 1.1 and 5.21). The cosmic ray flux in the region of energies where

AMANDA-II is sensitive is unaffected by the solar wind or the Earth’s magnetic field, and is there-

fore independent of the geographical location where the measurement is done and can be directly

compared to the other experiments. When the muon flux of this work is recalculated for a standard

US atmosphere, one obtains a slightly higher flux of 4 ���(	 
 &9	��(	*)
7 � �#	 �.- � cm �,+ sr �.- s �.- GeV �.- at

1 TeV, than at the South Pole. Although the results of the 1st and 2nd methods for the muon flux at

1 TeV are compatible with each other, only the result of the 1st method is quoted here for reasons

mentioned in the previous section (also because it can be quoted with smaller errors).
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Figure 5.21: Comparison of the measured muon flux with the results of other experiments;
figure adapted from [74]
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Chapter 6

Conclusions

- Self-deception report -

The downgoing muon simulation was substantially improved by using the extensive air

shower generator CORSIKA to describe the shower development in the atmosphere, and by writing

a new software package for muon propagation (MMC), which reduced computational and algorithm

errors below the level of uncertainties of the muon cross sections in ice. CORSIKA improved the

description of shower generation and allowed us to use several different high-energy interaction

models, and MMC reduced shower muon propagation errors to just 1%.

A method developed in this work appears to produce cosmic ray and muon flux val-

ues which depend only weakly on ice parameters and detector configuration. Starting with the

primary abundances given in [1] (Appendix A), cosmic ray flux corrections for both spectral in-

dex and normalization are obtained. Results of different high-energy interaction models are com-

pared with data from [1, 13] in Figure 5.1. For QGSJET,  � �/�0)1	�& 	��(	%�
and �8� � 	��"�#	%$ &

	��(	
	*)
m �,+ sr �.- s �.- TeV �.- (for the H component). The cosmic ray flux, summed over all compo-

nents (H � ����� � Fe) in the region of energies where AMANDA-II is most sensitive, is shown in Figure
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1.1 with a blue solid line.

The muon spectral index depends on the interaction model and is
�/��$
$ & 	��(	%�

for QGSJET.

The muon flux at 1 TeV appears to be independent of the high-energy interaction model and for

vertical muons is 4 ���(	%� &'	��(	*)
7 � �#	 �.- � cm �,+ sr �.- s �.- GeV �.- (at the location of the South Pole).

This value can be compared with that from the other experiments in Figure 5.21.

QGSJET, VENUS, and NEXUS produce similar results which agree best with those from

other experiments and theoretical expectations, but QGSJET is by far the fastest code (also faster

than the other three models).

It appears that insufficient accuracy in the description of the multi-muon events is the

likely cause for disagreement between high-energy interaction models.
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CORSIKA Tables
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A.1 Spectra of primaries

Table A.1: Spectra of primaries (parametrized as ��� � ��� ) used in CORSIKA implementation for
AMANDA-II (from [1])

El-t. charge at. weight � � ��4 � � 7  ��4  7 � +
H 1 1.00797 0.1057 0.003 2.76 0.02 0.7
He 2 4.0026 0.0673 0.002 2.63 0.02 2.1
Li 3 6.939 0.00208 0.00051 2.54 0.09 0.9
Be 4 9.0122 0.000474 4.8E-05 2.75 0.04 0.37
B 5 10.811 0.000895 7.9E-05 2.95 0.05 0.45
C 6 12.0112 0.0106 0.0001 2.66 0.02 1.42
N 7 14.0067 0.00235 8.E-05 2.72 0.05 1.91
O 8 15.9994 0.0157 0.0004 2.68 0.03 1.7
F 9 18.9984 0.000328 4.8E-05 2.69 0.08 0.47
Ne 10 20.183 0.0046 0.0001 2.64 0.03 3.14
Na 11 22.9898 0.000754 3.3E-05 2.66 0.04 0.36
Mg 12 24.312 0.00801 0.00026 2.64 0.04 0.1
Al 13 26.9815 0.00115 0.00015 2.66 0.04 1.24
Si 14 28.086 0.00796 0.00015 2.75 0.04 0.1
P 15 30.984 0.00027 2.E-05 2.69 0.06 0.68
S 16 32.064 0.00229 0.00024 2.55 0.09 0.44
Cl 17 35.453 0.000294 1.9E-05 2.68 0.05 2.36
Ar 18 39.948 0.000836 3.8E-05 2.64 0.06 0.45
K 19 39.102 0.000536 1.5E-05 2.65 0.04 4.58
Ca 20 40.08 0.00147 0.00012 2.7 0.06 0.6
Sc 21 44.956 0.000304 1.9E-05 2.64 0.06 0.81
Ti 22 47.9 0.00113 0.00014 2.61 0.06 5.67
V 23 50.942 0.000631 2.8E-05 2.63 0.05 6.83
Cr 24 51.996 0.00136 0.00012 2.67 0.06 3.41
Mn 25 54.938 0.00135 0.00014 2.46 0.22 5.38
Fe 26 55.847 0.0178 0.0018 2.6 0.09 1.81
Co 27 58.933 7.51E-05 3.7E-06 2.72 0.09 1.13
Ni 28 58.71 0.000996 4.3E-05 2.51 0.18 5.47
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A.2 Atmosphere parameters

Table A.2: Mass overburden parameter definitions

[0:4] km
[4:10] km

[10:40] km
[40:100] km

� 4 � 7 � � � � � � � � � � � � � , � � � � ����� � �

[100:112.8] km
� 4 � 7 � � �

� �
� �
� 
 � � ,

�
� �

�

Table A.3: Atmosphere parameters (fit to [28])

1 2 3 4 5

�*� ,
g/cm +

-137.656 -37.9610 .222659 -6.16201 � �#	 � 
 0.00207722
-163.331 -65.3713 .402903 -4.79198 � �#	 � 
 0.00188667
-142.801 -70.1538 1.14855 -9.10269 � �#	 � 
 0.00152236
-128.601 -39.5548 1.13088 -26.4960 � �#	 � 
 0.00192534

� � ,
g/cm +

1130.74 1052.05 1137.21 442.512 1.
1183.70 1108.06 1424.02 207.595 1.
1177.19 1125.11 1304.77 433.823 1.
1139.99 1073.82 1052.96 492.503 1.

��� , cm

867358. 741208. 633846. 759850. 5.4303203 � �#	 �
875221. 753213. 545846. 793043. 5.9787908 � �#	 �
861745. 765925. 581351. 775155. 7.4095699 � �#	 �
861913. 744955. 675928. 829627. 5.8587010 � �#	 �
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Appendix B

Influence of the Magnetic Field on the

Shower Propagation with CORSIKA

Figures B.1
�

B.3 demonstrate the influence of the magnetic field on the deviation of

muons from the direction of the primary (here called scattering). At zenith angles close to 
 	 �

such “magnetic” scattering is particularly strong. Therefore, a large number of upgoing primaries

can produce downgoing secondaries. This can be accounted for by generating a few degrees worth

of upgoing primaries at just below the horizon. Here up- and down- going primaries are meant in

the detector frame, i.e., at least
��� � �

below the value at which CORSIKA cuts away particles ( 
 	 � ).
Apparently a small number of particles visible in the detector frame is still lost due to tracking al-

gorithm imperfections, as seen in Figure B.1, which shows a small excess of negative over positive

� � deviations of muons from directions of primaries. This excess is exacerbated by the presence of

the magnetic field, which adds significantly to the particle scattering.
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Figure B.1: Deviation of secondaries from primaries
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Appendix C

Tables used by Muon Monte Carlo

(MMC)

All cross sections were translated to units � �

 cm
�
via multiplication by the number of molecules per

unit volume. Many unit conversions (like eV � J) were achieved using values of � � � + 
 � � and

� � ��� + 
 � � ��+ .

Table C.1: Summary of physical constants employed by MMC

� 1/137.03599976 ��� �/� ��� ) 
 �%	%� �
� � �#	 �.- � cm

� � $/�(	%�
��� � � 
 
5� �#	 + � 1/mol � 0.307075 � � � � ��� + 
 �
� � 
 
 ) 
 � �*� � � �#	 - � cm/s ��� 13.60569172 eV

� � 0.510998902 MeV � � 139.57018 Mev

� � 938.271998 MeV � � 939.56533 MeV

��� 105.658389 MeV � � �/�"� 
 )1	�� � �#	 � � s

��� 1777.03 MeV �
�

� 
 	���$ � �#	 �.-�� s
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Table C.2: Media constants

Material � � � , eV � � � � � � - � ,
� 
 ��� +

Water 1 + 1.00794 75.0 -3.5017 0.09116 3.477 0.240 2.8004 1.000
Ice + 8 15.9994 75.0 -3.5017 0.09116 3.477 0.240 2.8004 0.917

Stand. Rock 11 22 136.4 -3.774 0.083 3.412 0.049 3.055 2.650
Fréjus Rock 10.12 20.34 149.0 -5.053 0.078 3.645 0.288 3.196 2.740

Iron 26 55.845 286.0 -4.291 0.147 2.963 -0.001 3.153 7.874
Hydrogen 1 1.00794 21.8 -3.263 0.135 5.625 0.476 1.922 0.063

Lead 82 207.200 823.0 -6.202 0.094 3.161 0.378 3.807 11.350
Uranium 92 238.0289 890.0 -5.869 0.197 2.817 0.226 3.372 18.950

Table C.3: Radiation logarithm constant � (taken from [75])

� �
1 202.4
2 151.9
3 159.9
4 172.3
5 177.9
6 178.3
7 176.6

� �
8 173.4
9 170.0

10 165.8
11 165.8
12 167.1
13 169.1
14 170.8

� �
15 172.2
16 173.4
17 174.3
18 174.8
19 175.1
20 175.6
21 176.2

� �
22 176.8
26 175.8
29 173.1
32 173.0
35 173.5
42 175.9
50 177.4

� �
53 178.6
74 177.6
82 178.0
92 179.8

other 182.7

Table C.4: ALLM parameters (as in [63, 76])

��� - -0.0808 ��� + -0.44812 � � � 1.1709
� � - 0.58400 � � + 0.37888 � � � 2.6063� � -

	���$�	%� � � + � � +
��� �%)�� � + � � � 1.8439�

� -
	��"�#	*)/�
� + �

� +
��� 
 � �
$ + �

� � 0.49338
� � - 0.28067 � � + 0.22291 � � � 2.1979
� � - 0.80107 � � + 0.97307 � � � 3.4942
� +� � 
 � �*�%) � �#	 � MeV + � + 	��(	%$
�
�%) � �#	 � MeV + � +� 	�� ��� 
 �
� � �#	 � MeV +
� + � 	��"� ��	%�
� � �#	�� MeV + 
 +� � � + 	�� �*$�	�� ) � �#	�� MeV +
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Appendix D

Comparison of Spectra of Secondaries

Produced with MMC, MUM, LOH, and

LIP

D.1 Spectra of the secondaries

In order to determine spectra of primaries consistently for all codes, the following setup

was used. For each muon with fixed initial energy a first secondary created within the first 20 meters

is recorded (Figure D.1). This is somewhat different from what was done for Figure 3.7, since the

energy of the muon at the moment when the secondary is created is somewhat smaller than the initial

energy due to continuous energy losses. These are smaller when � �
	�� is smaller, and are generally

negligible for all cases considered below.

In Figures D.2
�

D.11 solid curves are probability functions normalized to the total num-
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Figure D.1: Spectra of the secondaries: the setup

������

��

���
���
���

�
�
�

�	

20 m

z

µ

ber of secondaries above 500 MeV. In Figures D.12
�

D.15 solid curves are probability functions

normalized to the total number of secondaries above
�#	 � � � � � . In Figures D.16

�
D.19 solid curves

are probability functions normalized to the total number of secondaries above
�#	 �,+ � � � . A setting

of � � ��� � �#	 +�- GeV is used for Figures D.5
�

D.7 (default is
�#	 - - GeV).
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D.2 Tracking and energy integrals

� �
�� � ��4 � 7� ��4 � 7 ��� � � � � ��� 4 � 7 (energy integral).

��� � � � � � � �� � �*�
��4 � 7 (tracking integral).

Figure D.20: Tracking and energy integrals: derivation (see Section 3.3.1)

x xdxi f

Most common behavior of tracking and energy integrals is shown in Figures D.21
�

D.26.
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Figure D.22: Energy Integral: � �
	 � � ���



144

Ecut=500 MeV

in
te

gr
al

 fu
nc

tio
n 

[c
m

/M
eV

]

Ecut=500 MeV

energy [GeV]

tr
ac

ki
ng

 in
te

gr
al

 [c
m

]

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10
10

11

10
-11

10
10 210 310 410 510 610 710 810 910 1010 1110 1210 13

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10
10

11

Ecut=500 MeV

in
te

gr
al

 fu
nc

tio
n 

[1
/M

eV
]

Ecut=500 MeV

energy [GeV]

en
er

gy
 in

te
gr

al
 []

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10

10
-410
-310
-210
-11

10
10 210 310 410 510 610 710 810 910 1010 11

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10

Figure D.23: Tracking Integral: � �
	�� � ��	
	
MeV

Figure D.24: Energy Integral: � � 	�� � ��	
	
MeV

Vcut=5 ⋅ 10-2

in
te

gr
al

 fu
nc

tio
n 

[c
m

/M
eV

]

Vcut=5 ⋅ 10-2

energy [GeV]

tr
ac

ki
ng

 in
te

gr
al

 [c
m

]

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10
10

11

10
-1

1

10

10 2
10 3
10 4
10 5
10 6
10 7

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10
10

11

Vcut=5 ⋅ 10-2

in
te

gr
al

 fu
nc

tio
n 

[1
/M

eV
]

Vcut=5 ⋅ 10-2

energy [GeV]

en
er

gy
 in

te
gr

al
 []

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

x 10
-3

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10

Figure D.25: Tracking Integral: � �
	�� � 	��(	%�
Figure D.26: Energy Integral: � �
	�� � 	��(	%�



145

D.3 Number and total energy of secondaries
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Figure D.27: Number and total energy of
secondaries: the setup Figure D.28: Number of secondaries

In spite of the numerous problems with propagation codes other than MMC, shown in Fig-

ures D.8
�

D.19, it was possible to use these codes in the simulation of AMANDA-II. To understand

why, the following setup is used. For each muon with fixed initial energy all secondaries created

within the first 800 meters (equal to the height of the AMANDA-II detector) are recorded (Figure

D.27). Although the number of secondaries generated by propagators LOH and LIP is different

from that generated by MMC or MUM (Figure D.28), the total energy deposited in the volume of

the detector is commensurable between all four propagators. The number of generated secondaries

depends on the chosen value of � �
	�� or � �
	�� . While MMC and MUM allow one to select this value,

LOH and LIP have a built-in value which cannot be changed. From Figure D.28 it appears that these

codes use a value of � � 	�� which lies between
�#	 �,+ and

�#	 � � since their number of secondaries lies

between that generated with MMC with � �
	�� � �#	 �,+ and � �
	 � � �#	 � � . One would expect the total
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energy of secondaries generated with LOH or LIP to be somewhat lower than that generated with

MMC or MUM with � �
	�� � ��	
	
MeV. This, however, is not true: the total energy of secondaries

generated with LOH and LIP is somehow renormalized to match that of MMC and MUM (Figures

D.29 and D.30).
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Figure D.29: Total energy of secondaries Figure D.30: Relative energy of secondaries

Figures D.28 and D.30 also demonstrate the region of energies for which MMC can be

used: with fixed � �
	�� � 	����
GeV, MMC seems to work for energies up to

	���� � �#	 -�� GeV (determined

mainly by the computer precision with which double precision numbers can be added:
	���� 
1	���� �

�#	 -�� � �#	 �.-�� ).
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Appendix E

Main Analysis Supplements

E.1 Ice model definitions

Production of the simulated data used in this work was done using the Monte Carlo chain

as shown in Figure 1.6. Figure E.1 shows the main features of the simulated data samples. High

energy interaction models used by CORSIKA for the air shower generation were introduced in

Section 2.2. Here different ice parameter sets are described.

The chosen method of photon propagation for this work is based on PTD [71]. This

depends on the ice parameters. The following parameter sets were used:

1. bulk ice: assumes homogeneous optical properties.

2. f125 ice: same as bulk, but scattering and absorption have been increased by F=1.25.

3. stdkurt ice: (standard Kurt) uses layered ice parameters (see Figure 4.3 for scattering coeffi-

cient).
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4. sudkurt ice: (Sudhoff-Kurt) same as stdkurt, but different glass measurements which increase

sensitivity by � 25%.

5. kgm ice: (Kurt-Gary model) similar to stdkurt, but based on the best ice measurements as of

Fall 2001, on average � 20% more scattering,
	 � �
�

% more absorption than in stdkurt.

6. mam ice: (Modified absorption model) starting from kgm model, absorption was increased

to match time residuals of the arriving signals between data and Monte Carlo.

7. mamint ice: Same as mam, but using newer simulation package with multiple updates in

software.

Points in plots 4.34 and 4.36 were averaged for each set (i.e., average parameters were

calculated using all � -layers at
� �#	

m �
�

� �#	
m). The result is shown in Figures E.2 and E.3.

The newest ice parameter sets are shown in black triangles (mamint and kgm models). The overall

description of data with these new parameter sets is much converged (and is close to data points

along their corresponding parabolas) compared to the range of the previous generation of the ice

models.

E.2 Detector configuration uncertainties

In order to estimate uncertainties in the knowledge of the detector configuration (position

and signal calibration of the OMs, etc.) and errors due to cross talk, detector configuration param-

eters were varied. Figures E.4 and E.5 show stability of the found spectral index correction with

respect to these changes. The variance in the result obtained with different settings was taken as the

“detector configuration error,” or conf in the results.
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N ⋅ exp( -dt/τ )
N = 46165.4
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Figure E.6: Dead time calculation

E.3 Dead time correction

When the AMANDA-II electronics is triggered, its DAQ1 takes some time to scan through

its hardware and record the event. If during this process another event occurs, it will not be recorded,

thus resulting in some loss of events. For each data sample time differences between consecutive

events were histogrammed (Figure E.6) and an exponential was fit to the resulting distribution. The

inverse of the time constant of the exponential gives the “true” data rate, which is what is expected if

there were no hardware dead time. The measured data rate divided by this number gives the fraction

of time the detector was operational.
�

Digital acquisition system.
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Appendix F

Software Parameters

F.1 CORSIKA configuration

Default CORSIKA configuration file INPUTS used is shown in Figure F.1. UCR (Utility

for CORSIKA shower core Randomization) available parameters are shown in Figure F.2. COR-

SIKA was run with CORSIKA � INPUTS � printout. Its output is then randomized with

ucr -out=out.gz DAT000001.gz -oms -tr=2 -over=1 -cmt=INPUTS -run=[run number, here 1]

-SHOWERS=
�����

-FLUXSUM=[taken from the CORSIKA output; 0.1584 m �,+ sr �.- s �.- for set-

tings shown] -LENGTH=800 -RADIUS=400 -DEPTH=1730 -HEIGHT=2834 -EARTHR= � ��� �
��� �

-DCORR=35 -cutfe=273. -curved=4 -cutth=85.



152

RUNNR   1                              number of run
EVTNR   1                              number of first shower event
NSHOW   1000000                        number of showers to generate
PRMPAR  14                             particle type of prim. particle
ESLOPE  −2.7                           slope of primary energy spectrum
ERANGE  600.  1.E11                    energy range of primary particle
THETAP  0.  89.999                     range of zenith angle (degree)
PHIP    0.  360.                       range of azimuth angle (degree)
SEED    1   0   0                      seed for 1. random number sequence
SEED    2   0   0                      seed for 2. random number sequence
SEED    3   0   0                      seed for 3. random number sequence
OBSLEV  2834.E2                        observation level (in cm)
ELMFLG  T  F                           em. interaction flags (NKG,EGS)
RADNKG  2.E5                           outer radius for NKG lat.dens.determ.
ARRANG  0.                             rotation of array to north
FIXHEI  0.  0                          first interaction height & target
FIXCHI  0.                             starting altitude (g/cm**2)
MAGNET  16.4  −53.4                    magnetic field south pole
HADFLG  0  1  0  1  0  2               flags hadr.interact. & fragmentation
QGSJET  T  0                           use qgsjet for high energy hadrons
QGSSIG  T                              use qgsjet hadronic cross sections
ECUTS   273. 273. .003 .003            energy cuts for particles
MUADDI  T                              additional info for muons
MUMULT  T                              muon multiple scattering angle
LONGI   F  20.  F  F                   longit.distr. & step size & fit
MAXPRT  0                              max. number of printed events
ECTMAP  100                            cut on gamma factor for printout
STEPFC  1.0                            mult. scattering step length fact.
DEBUG   F  6  F  1000000               debug flag and log.unit for out
DIRECT  ../output/                     output directory
ATMOD   13                             october atmosphere
DETCFG  1.                             detector information (l/d)
F2000   T                              choses F2000 format
LOCUT   T 1.58                         enables skew angle cutoff
RANPRI  T                              random primary
SPRIC   T                              separate primary energy cutoffs
FSEED   T                              enable random generator seed recovery
DSLOPE  0.                             slope correction
SCURV   T 6.4E8 1.73E5                 curved surf., radius of Earth, depth
EXIT                                   terminates input

Figure F.1: CORSIKA configuration INPUTS file
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This program merges F2000 files, v0.02
Available options are: −h  = −help  print this message and quit
                       −q  = −quit  quit immediately
                       −out=[NAME]  change output file to NAME
                       −tr=[NUM]  output only events with # of tracks >= NUM
                       −over=[..] oversample by this number, default is 1
                       −r = −randomize randomize shower core xy locations
                       −c = −curved same for curved Earth’s surface
                       −curved=[1−4] different curved surface treatment:
                         1: only downgoing primaries (th from 0 to 90 deg.)
                         2: only upgoing primaries (th from 90 to 180 deg.)
                         3: decide at random, either goes up or down
                         4: oversample x2 each event with th > cutth
                       −phi = −rphi    also randomize azimuth angle
                       −cutth=[degrees]    value used for −curved=4
                       −EARTHR=[radius]    of the Earth            [m]
                       −LENGTH=[length]    of the detector         [m]
                       −RADIUS=[radius]    of the detector         [m]
                       −DEPTH=[depth]      of the detector center  [m]
                       −HEIGHT=[altitude]  of the ice surface      [m]
                       −DCORR=[correction] depth correction (35 m) [m]
                       −rmpri  remove primaries
                       −rmusr  remove user blocks
                       −oms    output only muons
                       −ohm    leave only muon with highest energy per event
                       −msn    leave only muon and neutrinos, delete others
                       −cmt=[file]    append comments contained in the file
                       −run=[number]  set the run number
                       −FLUXSUM=[CORSIKA’s value]   per meter2 second sr
                       −SHOWERS=[number] of showers generated by CORSIKA
                       −rr     remove possible previous xy randomization
                       −rr=[DEPTH]   and set the previous value of DEPTH
                       −test [num] [theta] [phi]   test xy randomization
                       −cutfe=[GeV]  angle−dependent cutoff energy for muons
                       −corr change time definitions to be Basiev−compatible

Figure F.2: UCR (Utility for CORSIKA shower core Randomization) parameters
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This program propagates muons in Ice to/through the detector
Available options are: −length=[LENGTH of the detector volume in meters]
                       −radius=[RADIUS of the detector volume in meters]
                       −vcut=[value of vcut used for the 1st region]
                       −ecut=[ecut in  MeV  used for the 2nd region]
                       −medi=[medium name]
                       −mediadef=[file with media definitions]
                       −tau  propagate taus instead of muons
                       −sdec enable stopped muon decay treatment
                       −user     enable the mmc_en user line
                       −user=[z] same, but record energy at z, not CPD
                       −rdmc     enforce compliance with rdmc
                       −amasim   turn on workarounds for amasim
                       −time precise time of flight calculation
                       −cont enable continuous loss randomization
                       −scat enable Moliere scattering
                       −lpm  enable lpm treatment
                       −allm enable allm photonuclear parametrization
                       −phnu=[1−4] choose another photonuclear formula
                       −elow=[muon energy in GeV below which it is lost]
                       −ebig=[upper bound in GeV of the paramet. tables]
                       −surf=[h in meters]  propagate to the plane z=[h]
                       −face  only if detector is on opposite side of it
                       −maxbuf=[max number of lines per event] (10000)
                       −romb=[number of interpolation points]
                       −seed=[integer] sets random number generator seed
                       −raw  save tables in raw format
                       −tdir=[dir] specify directory for paramet. tables

Figure F.3: MMC (Muon Monte Carlo) parameters

F.2 MMC configuration

MMC (Muon Monte Carlo) available parameters are shown in Figure F.3. MMC was run

as follows: ammc -r -a -length=800 -radius=400 -romb=5 -raw -user -sdec -time -cont -lpm

-allm -scat -amasim. MMC user line is defined as follows:

USER DEF mmc en NR E INI E CPD E IN E OUT CDP X CDP Y CDP Z Z IN Z OUT,

where the parameters are (in their order): muon track number, its initial energy, its energy at the

point of closest approach to the center of the detector, its energy when entering and exiting the

detector cylinder, coordinates of the point of closest approach, and � -coordinate when entering and

exiting the detector cylinder.


